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Abstract

In this thesis we explore the possibilities of using various real-time shadow
techniques in a 3d game engine. We describe a technique known as the stencil
shadow algorithm and show how it can be extended to produce soft shadows from
volume light sources using penumbra wedges. The penumbra wedge technique
allows for real-time soft shadows in relatively simple scenes.

We present a novel coverage calculation technique for spherical light sources,
which significantly reduces the amount of pixel shader instructions and the
amount of texture memory required for look-up tables.

We identify a performance bottleneck in the algorithm which prevents the
achievement of real-time performance in complex scenes, and we present a new
version of the algorithm that eliminates this bottleneck for a limited class of
shadow casting objects.

We have implemented both versions of the soft shadow algorithm in our
game engine, and we compare their respective performance on different hard-
ware. Some implementation details are given, including the CG source code for
the vertex and pixel shaders we have used.

We discuss how to effectively manage a large number of shadow volumes in
a dynamic game scene where both lights and shadow casters move around freely.
Finally, we give an overview of some of the limitations in graphical hardware
anno 2003 that introduce unnessesary work loads on the algorithm, thus degrading
performance.
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Chapter 1

Introduction

A realistic light setting with proper shadows is very important in 3d graphics.
Without shadows, images tends to look flat and it is difficult (or even impossible),
to determine the size and spatial relation of the objects in the scene. In the upper-
left corner of figure 1.1 a simple scene is rendered without any shadows. Without
changing the camera angle it is hard to determine where exactly the bench is lo-
cated in the scene, but at first glance it would seem that it is standing on the
ground, a bit behind the lamppost. Indeed that is one possible interpretation of
the image, as can be seen in the bottom-left rendering where shadows have been
enabled. Another interpretation of the image could be that a slightly smaller ver-
sion of the bench is floating in the air a short distance in front of the lamppost, as
shown in the upper-right rendering in the figure. Without shadows it is impossible
to tell which of the two interpretations is correct, but as soon as the shadows are
included there really is no doubt.

In a computer game shadows are important as well, not just because they in-
crease the level of realism and overall quality of the graphics, but also because
they can affect the game-play significantly. F.ex. if the player is required to jump
onto a platform or dodge a moving object, shadows provide very important visual
clues required for the player to determine when to press the jump or dodge button.
Without shadows such tasks can quickly become frustrating and annoy the player
to the point where he stops playing the game. As a result, an enormous amount of
research has been done on the topic of real-time shadow algorithms, fast enough
for use in an actual computer game set in a complex 3d environment.

Currently most real-time shadow algorithms have been limited to hard shad-
ows, like those in figure 1.1. Hard shadows are the result of light sources being
modeled as a single point with no area and can be recognized by a very sharp tran-
sition from light into shadow. If light sources are modeled with an actual shape
with an area or volume, (as f.ex. a sphere), soft shadows can be produced. Soft
shadows can be recognized by their inclusion of a penumbra region: an area that is
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Figure 1.1: The importance of shadows in a 3d image

Figure 1.2: Hard vs. soft shadows
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neither fully lit nor fully in shadow. The visual quality of soft shadows compared
to that of hard shadows is very high, as demonstrated in figure 1.2. It is thus highly
desirable to be able to apply real-time soft shadows to computer games. Unfortu-
nately, the computations required for soft shadows are much more complex than
those required for hard shadows. To the best of our knowledge, no released game
has utilized true, real-time, dynamic soft shadows1.

Key results
In this thesis we explore the possibilities of applying true and fully dynamic soft
shadows to game scenes. We have implemented, as well as developed several op-
timizations for, a recent soft shadow algorithm and applied it to our game engine.
Our contributions include a novel technique for calculating coverage values for
spherical light sources. With this technique we are able to significantly reduce the
length of the pixel shader, used for rendering soft shadows, as well as the amount
of texture memory required for the technique. We also discuss some unresolved
problems that still remain with regard to the technique, and we identify a serious
performance bottleneck in the algorithm, which will have to be addressed before
the technique can be applied to actual game scenes. Finally we present and dis-
cuss an outline for a new algorithm, which overcomes this bottleneck for a limited
class of shadow casting objects.

Definitions and assumptions
In writing this thesis we have assumed that the reader is familiar with common
terms and concepts used in 3d computer graphics. This includes concepts such as
the color buffer, z-buffer and stencil buffer. Furthermore, it is assumed that the
reader understands how the graphics pipeline operates on 3d meshes and moves
them through a chain of 3d spaces, (often referred to as the model-space, world-
space, view-space and projected-space), before actually rasterizing them into the
color buffer. An understanding of homogeneous coordinates and how they solve
the problem of being able to implement translation as well as rotation and scal-
ing through a 4x4 transformation matrix is also assumed. Finally, the reader is
assumed to have a thorough understanding of vertex and pixel shaders. Refer to
Appendix A for a brief introduction to all these concepts.

Whenever we refer to ’current graphics cards’ or ’the latest graphics hard-
ware’, throughout the thesis the intended meaning is DirectX 9.0 based graphics
cards such as nVidias nv30-based and ATIs R300-based cards. All these chipsets
has support for vs2.0 and ps2.0 shaders which are the minimum requirements for

1’Fake’ soft shadows have been applied to certain games where a hard shadow is simply blurred
somewhat along the edge.
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our implementation of the soft shadow algorithm. Specifically we have used Di-
rectX 9.0b with a Radeon 9700Pro graphics card.

Thesis organization
In chapter 2 we briefly discuss how light works in the real world and in computer
graphics. We introduce something called the rendering equation: a compact for-
mulation of how to calculate lighting that gives us a framework against which we
can compare our real-time solutions. In chapter 3 we give a short overview of
the different real-time shadow solutions and then we elaborate on stencil shad-
ows, the technique our soft shadow implementation is based upon. In chapter 4
we introduce a technique for rendering soft shadows in real-time with the use of
a rendering primitive called a wedge, and we present our novel extensions to the
soft shadow algorithm, followed by a discussion of the unresolved problems with
the technique. In chapter 5 we discusses how a large amount of shadow casting
objects in a game scene is efficiently managed, so that only those shadow vol-
umes that affects the visible image are processed and rendered. In chapter 6 we
provide an overview of our game engine which has been the framework for our
implementation of the soft shadow technique, and we present some details of the
implementation which was left out in the earlier chapters. Finally, in chapter 7,
we summarize our results, draw conclusions and give suggestions for future work
that would improve the soft shadow technique.
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Chapter 2

Lighting

One of the goals of real-time 3d applications such as a computer game is to sim-
ulate a world and to generate real-time images which, to a certain degree, tricks
us into believing that we are actually ’inside’ this virtual world. Many real-time
applications have been created where the user feels immersed in the virtual world
and consequently, in some sense, believes that the generated images are real. This
is not a result of photo-realistic images, as these are generally impossible to pro-
duce in real-time today, but because the human brain is capable of filtering away
the flaws and inconsistencies in computer generated images and recognize what
the image is supposed to represent. Photo-realism is therefore not necessarily an
absolute requirement and in some applications, cartoons for instance, not even de-
sired. In other applications though, f.ex. movies, games with a realistic look and
architectural visualization applications, it is desirable to generate images as close
to reality as possible and for such applications it is important to study why the real
world looks the way it does.

In this chapter we first give a theoretical overview of local and global light-
ing models, introducing something called the rendering equation as well as the
concept of a BRDF. Then we discuss how this theory can be approximated and
applied to real-time graphics. In doing so, we introduce a framework that we can
later compare our various light and shadow methods with.

2.1 Light models
Light models are the mathematical formulas used when calculating the color of a
point on the surface of an object. Many different models have been proposed and
the most important distinction between them is whether they are local or global
models.
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2.1.1 Local models
Local light models compute the color of a point on a surface by considering the
position of the point, the properties of the surface that it is a part of, and the
properties of any light sources that shines on it. This means that no other objects
in the scene, except light sources, are considered neither as blocking light nor as
reflecting light. This is clearly a crude approximation, and it will f.ex. make no
difference whether there is an opaque object between the point and a light-source
or not. In a more realistic light model such an object would cause a shadow. In
spite of this, local light models are often used in real-time applications because of
the minimal amount of computations required, and because only local knowledge
of the scene geometry is needed.

We start by considering a point x′. If x′ receives light from another point x′′,
f.ex. a light source, then we are interested in how that incoming light is reflected.
If the eye point is placed at x we want to know how much light emitted at x′′

towards x′ is received by x. Figure 2.1 shows this setup.

x

x’

x’’

geometry

Figure 2.1: The three points involved in the local light model.

Since no more light can be reflected than is received, and since there is no
such thing as negative light, the light received by x′ and the light reflected towards
x is assumed to be related by a factor in [0..1]. The reflection is dependent on
the geometric relationship between the three points, an example being that the
farther the three points are apart the less light x will receive. The reflection is
also dependent on the orientation of the surfaces on which the points are located.
F.ex., if the surface normal at x′ is pointing towards x′′, x′ will receive more light
than if it had a different orientation. Reflection is also highly dependent on the
wavelength of the incoming light. All these factors can be combined into a single
function: the BRDF or Bidirectional Reflectance Distribution Function1. We can

1BRDF is also called spectral reflectivity coefficient. It was introduced by Nicodemus et al.
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describe the light passing from x′ to x as a result of light passing from x′′ to x′ as:

Lx′′(x, x′) = L(x′, x′′)BRDF (x, x′, x′′) (2.1)

Notice that the wavelength of the light is not mentioned explicitly. This omis-
sion is made on purpose because the relation is then independent of how we rep-
resent colors. For the usual RGB representation of colors all the elements are
3-vectors and the multiplication operation is per-component multiplication as de-
scribed above.

Light is actually a stream of photons, and since a particle can only be reflected
in one direction, the BRDF actually describes the chance of reflecting a photon
in a certain direction or the percentage of all incoming photons that are reflected
in that direction. This is not an important distinction as we do not model photons
directly.

A different formulation of the BRDF is possible. Instead of using 3 points we
can define a BRDF function which takes as input a single point, a direction for
the incoming light and a reflection direction2. Under the direction formulation the
local light model would look like this:

L~ωi
(x, ~ωo) = Li(x, ~ωi)BRDF (x, ~ωi, ~ωo) (2.2)

Where ~ωi is the direction of the incoming light, and ~ωo is the outgoing direction
of the reflected light. It is sometimes more convenient to use this formulation of
the BRDF but the basic idea is the same.

A visualization of a BRDF for a single incoming direction is seen in figure
2.2. The distance of the curve from x′ represents the amount of reflection. The
farther away the curve is, the more light is reflected in that direction.

n

’

’’

X

X

Figure 2.2: Visualization of a BRDF for a single incoming direction.

in 1977[NRH+77]. Note that in the manner we present it here it is actually the unoccluded three
point transport reflectance as described in [Kaj86].

2This is the original formulation of the BRDF.

9



The BRDF is a very general description of reflection, and in real-time applica-
tions a general BRDF is often too expensive to evaluate so instead a simpler and
cheaper model is often used. We will elaborate on this in section 2.2.

2.1.2 Global models
Global light models take into account the entire virtual world. This means that
every object in the entire scene can potentially influence the color of a point.
Examples of such influences are objects blocking direct light from a light source
to the point or objects reflecting additional light onto the point. The result of using
a global light model is often called global illumination.

The ’standard’ model is the rendering equation introduced by Kajiya in
1986[Kaj86]. Kajiya says:

“[The model] subsumes a wide variety of rendering algorithms and
provides a unified context for viewing them as more or less accurate
approximations to the solution of a single equation.”

The rendering equation is:

L(x, x′) = v(x, x′)
[

Le(x, x′) +
∫

S
BRDF (x, x′, x′′)L(x′, x′′)dx′′

]

(2.3)

The function v encodes visibility. v is 1 if x and x′ are mutually visible and
0 otherwise. Le is the light passing from x′ to x because of the emission of light
at x′. Unless x′ is a light source this factor will be zero. S is the union of all
surfaces of all objects in the entire scene. The rendering equation therefore states
that the light passing from x′ to x is zero if they are not visible to each other;
otherwise they are the sum of the emitted and the reflected light from x′. The
emitted light is a property of the object, which x′ is a part of, and the geometric
relationship between x and x′. The reflected light from a single source point, or a
single incoming direction, has already been described in equation 2.1, so the total
amount of reflected light must be the sum (integral) of the contribution from every
point in the scene.

The rendering equation cannot be directly evaluated since L occurs on both
sides of the equation. However we can reformulate it as Kajiya[Kaj86] does. We
start by writing it in a compact form:

L = vLe + vTL (2.4)

where

< Tf > (x, x′) =
∫

S
BRDF (x, x′, x′′)f(x′, x′′)dx′′
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By evaluating equation 2.4 recursively we get:

L = vLe + vTL

= vLe + vT (vLe + vTL)

= vLe + vT (vLe + vT (vLe + vTL))

= vLe + v(Tv)Le + v(Tv)2Le + v(Tv)2TL

=
∞
∑

n=0

v(Tv)nLe (2.5)

An intuitive interpretation of this is that the light from a point is the sum of
light reflected 0,1,2,3,. . . times from the point. This allows a reformulation of the
distinction between local and global models. Local models only calculate light
which is reflected zero and one times, i.e. light emitted from the point and light
received directly from a light source, and disregard visibility for the reflections.
Global models calculate light reflected any number of times, using a local model
when calculating a single reflection.

2.2 Lighting in real-time computer graphics
The most general way of representing a BRDF is to sample it for a number of
incoming and outgoing directions and then use the samples as a lookup table,
interpolating the values. Since most BRDFs are not smooth quite a lot of samples
of this six-dimensional function3 is required. In real-time applications, this is
often too expensive. To develop a simpler model we will look at special types
of BRDFs that are interesting from a performance point of view. The standard
lighting model for real-time applications is a result of attempts to model special
types of BRDFs and the multiple reflections of light described by the rendering
equation.

2.2.1 Diffuse BRDFs
A perfectly diffuse4 surface reflects incoming light equally in all directions. Ex-
amples of this are dull, mat materials such as chalk or soot. The BRDF for such
surfaces is constant under a change of outgoing direction (a direct consequence of
reflecting equally in all directions). A change in the incoming direction will still

3A BRDF in the direction formulation is six dimensional: two values for the coordinates of
point on a surface and two values for each direction since a direction can be represented in spher-
ical coordinates.

4Also known as a Lambertian surface.
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change the BRDF since the light received by x′ depends on the orientation of the
surface which x′ is a part of. In figure 2.3 we see a beam of light with unit width
hitting a surface at an angle θ. The area covered by the beam is equal to 1/ cos θ.
We can therefore see that light hitting x′ should be scaled by cos θ, where θ is the
angle between the surface normal ~n and the direction towards the source point. If
we call that direction ~ωi, as in the direction formulation of the BRDF, and assume
that both ~n and ~ωi are normalized, then cos θ can be calculated as ~ωi · ~n (the dot
product of ~ωi and ~n).

Figure 2.3: An incoming beam covers an area of 1/ cos θ.

This cos factor is fundamental in the sense that all physically correct BRDFs
must include this. Except for the cos factor the BRDF for a perfectly diffuse
surface is constant.

2.2.2 Specular BRDFs
Another special case of BRDFs is the perfectly specular surface. Here the incom-
ing light is always reflected exactly in the mirror direction5. Examples of perfectly
specular surfaces include mirrors and still water surfaces. If we disregard the cos
factor on the incoming direction, a BRDF for a perfectly specular surface in the
direction formulation is:

BRDF (x, ~ωi, ~ωo) =

{

ρ if ~ωo = mirror(~ωi)
0 otherwise

}

Where ρ is a constant which tells how much of the light is reflected versus
absorbed. Since few materials are perfect, light is often reflected in a small cone
around the mirror direction. A surface, which is mostly specular, but not perfect, is
called glossy. In figure 2.4 we see a visualization of a perfectly diffuse, a perfectly
specular and a glossy BRDF.

5The mirror direction is where the incoming angle equals the outgoing angle, and it can be
calculated as: mirror(~ω) = 2(~ω · ~n)~n − ~ω.
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Figure 2.4: Special cases of BRDFs.

2.2.3 Ambient light
If we look at the rendering equation as written in equation 2.5 it is the sum of
light reflected 0,1,2,3,. . . times. The local model we are about to describe makes
a fair approximation of the 0th and 1st reflection but disregards the rest. These
missing reflections would give a subtle illumination in a real environment, even
on surfaces that are not directly illuminated by any light sources. This is because
it is usually possible to find a path which, when reflected enough times, eventually
reaches a light source from any one point.

A very crude but cheap approximation to this is to introduce an ambient term.
The global ambient light is defined as a constant amount of light that illuminates
all objects in the scene. Furthermore, light sources emit ambient light which is
received by objects independent of their orientation. Different objects can still
reflect this light differently however and the ambient term for a point is therefore
the ambient light multiplied by an ambient reflection coefficient for the point.

2.2.4 The standard lighting model for real-time applications
The three different terms introduced above can be combined to form a local light
model, which is used by allmost every real-time application6. It can be written as:

6We shall not describe all the details of the standard light model. For a more thorough descrip-
tion see f.ex. [WND+99] pp. 211 - 215 or [FvDFH91] section 16.1.
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L(x) = xemission

+ globalambient ∗ xambient

+
N
∑

i=0

Li
attenuation ∗







Li
ambient ∗ xambient+

Li
diffuse ∗ xdiffuse ∗ (~n · ~ωi)+

Li
specular ∗ xspecular ∗ (~n · (~ωi + ~ωo))

xshininess)







Where xp means property p of the point x, and Li
p is property p of the ith light

source.
The equation states that the color of a point x is the sum of the emission,

global ambient and the ambient, diffuse and specular contribution from all N
light sources in the scene. The contribution from each light source is dependent
on the distance between the light source and the point. This attenuation is called
Li

attenuation in the equation and is defined as:

Li
attenuation = min

(

1,
1

Li
c + Li

ld + Li
qd

2

)

Where d is the distance between x and the ith light source. Li
c, Li

l and Li
q are

the constant, linear and quadratic attenuation parameters respectively. They can
be adjusted individually for each light to achieve a certain attenuation behavior.
The total attenuation factor is clamped to the range [0..1] as light cannot be nega-
tive, and considering that the attenuation should never make a light stronger than
its original power.

The ambient contribution from a light source is only dependent on the distance
to the light source, whereas the diffuse contribution is scaled by the cos factor as
described above. The specular contribution from a light uses a model proposed
by Phong Bui-Tong[BT5x]. It models glossy surfaces by assuming that the light
specularly reflected is dependent on the angle between the outgoing direction and
the mirror direction, and a material dependent shininess factor (xshininess). The
dot product between the normal vector and the mirror vector, which are normal-
ized before use, returns a number in [0..1]. Raising this number to the power of
the shininess factor, which is typically between 1 and 256, gives a function which
is 1 when the angle to the the mirror direction is 0 and falls of quickly with in-
creasing angle. In early implementations the true mirror direction was not used
for efficiency reasons, instead the halfway vector, calculated as ~ωi +~ωo, was used.
Current implementations can easily afford to calculate the true mirror direction
and use that as input to the Phong model.

The standard lighting model is a highly empirical model. It uses approxima-
tions which work well in many cases, but it has no grounding in any theoretical
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model of light interaction. Phong’s model for specular reflection is a exactly such
an imperial model. Furthermore, the calculations for the ambient, diffuse and
specular contributions are totally separate. This allows light sources to emit red
’specular’ light and green ’diffuse’ light for example. This wouldn’t be physically
correct, but it gives a lot of artistic freedom to achieve a certain look.

The reason for the popularity of the standard lighting model is probably a
combination of four things: it is relatively cheap to compute, it is conceptually
simple, it models many of the most important aspects of light/object interaction,
and it allows a great degree of artistic freedom. The two most used real-time
APIs, OpenGL and DirectX, implement the standard model in their fixed function
pipeline, and previously applications were forced to use the standard model if
they wanted to take advantage of hardware acceleration. This has changed with
the introduction of the programmable pipeline which allows you to implement any
model you desire.

2.2.5 Vertex vs. pixel based lighting
The standard lighting model, described above, can be evaluated per fragment on
current hardware. Previously this was too computationally expensive and a dif-
ferent approach was used. The light model was only evaluated per vertex and the
resulting color was then interpolated across the triangle. This is called Goraud
Shading, (see [FvDFH91] section 16.2.4). The two approaches are also called
per-vertex lighting and per-pixel lighting. Per-vertex lighting is of course compu-
tationally cheaper but it has several visible deficiencies, where the most important
ones stem from the fact that the interpolation cannot produce higher values than
the values at the vertices. Therefore a fragment in the center of a triangle can-
not be brighter than the fragments at the vertices. Consequently areas where the
lighting changes rapidly, such as specular highlights and light sources very close
to the geometry, will exhibit visual artifacts, especially in animated scenes. These
problems will become less noticeable if objects are highly tessellated, (using more
vertices and triangles), but as mentioned with current hardware it is possible to use
per-pixel lighting which of course produces the best results.

Figure 2.5 shows a simple scene rendered with per-vertex lighting on the left,
and with per-pixel lighting on the right. The left side also shows a wire-frame view
of the wall segment being illuminated. As is seen, the two different approaches
results in very different images. With per-vertex lighting the light does not seem
to have any effect at all. And indeed, with this setup, the light does not affect
the image since none of the vertices that make up the wall segment fall within its
sphere of influence. With per-pixel lighting, an attenuation value for the light is
calculated at each fragment and as a result, the wall is correctly lit.
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Figure 2.5: Per-vertex and per-pixel lighting.
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Chapter 3

Shadow techniques

An exact solution to the rendering equation discussed in the previous chapter is
not possible. Various off-line rendering techniques such as raytracing, photon
mapping and radiosity give approximations to the rendering equation where the
visibility functions are taken into consideration. This means that these techniques
automatically produce images where shadows, sometimes even soft shadows, are
included. However, the only feasible solution for real-time rendering is currently
rasterization, which in its basic form uses the local light model described in sec-
tion 2.2.4. By definition, using a local light model means that shadows are not
included, but as we shall see in this chapter various algorithms exist that extend
the rasterization approach with a visibility function for direct illumination.

In this chapter we first give an overview of the most important real-time
shadow algorithms. We then focus on a particular technique called the stencil
shadow algorithm, which is used by many real-time applications today. Several
optimizations, improvements and versions of the stencil shadow algorithm are de-
scribed as is how they can be viewed as approximations to the rendering equation.

3.1 Overview of shadow algorithms
For real-time applications shadow algorithms can be split into three groups that
we have named limited, static and general.

Limited algorithms operate in environments with very restrictive assumptions.
An example of this is the projective shadow algorithm [Bli88], which assumes that
the object receiving shadow is a plane with a known orientation and position and
that no objects are positioned between the shadow caster and the plane. Limited
algorithms serve a purpose in specific environments, e.g. a CAD system, but are
not widely used today.

Static approaches are characterized by their assumptions that objects and lights

17



are stationary and it is therefore possible to precalculate shadow and light informa-
tion. An example of a static algorithm is lightmaps, (see [AMH02] section 5.7.2),
which precalculates light, and thus shadow, information to textures. Objects are
then rendered with this additional texture modulated on top of their usual texture
map. Since the precalculation can be a global illumination calculation, very good
image quality can be achieved. Furthermore, as the rendering of an extra texture
is something that all modern graphic cards excel at, the algorithm is very fast.
Yet the algorithm also has its drawbacks, such as the static nature of the textures,
which prevents non-stationary objects from casting shadows. Furthermore, the
storage space required for the lightmapping algorithm can be fairly large since a
lightmap must be stored for each triangle in the scene. Despite all of this, the
lightmap algorithm is heavily used in many real-time applications, often to good
effect.

General algorithms try to calculate shadows in a general environment where
very little can be assumed about the nature of the shadow casters or the shadow
receivers, and where all objects and lights can move freely around the scene.

This division of shadow algorithms into three groups is quite crude, and a lot
of research has been conducted to create algorithms that cross these boundaries to
reach a good compromise between the advantages and drawbacks of each group.
See [AMH02] section 6.12 for an overview of real-time shadow algorithms. In
recent years, research has focused on generel algorithms because developments
in hardware have rendered the limited and static algorithms relatively simple to
execute. Our focus for the remainder of this thesis will be on general algorithms
only.

The two most successful general algorithms are stencil shadows and shadow
maps. Stencil shadows will be explained in detail below. The basic observation
with regard to shadow maps[Wil78] is that between the view-space of the observer
and the view-space of a light source there exists a linear mapping (expressible by
a 4x4 matrix and therefore cheap to calculate). The algorithm has two passes: In
the first pass the scene is rendered into the light’s view-space and the depth infor-
mation, (i.e. how far away every fragment is from the light), is stored in a shadow
map. In the second pass the scene is rendered normally and it is now possible
to determine whether a fragment can ’see’ the light source. This is determined
by transforming the fragments position into the lights view-space and comparing
its depth to the stored depth value in the shadow map. If the fragment is farther
away than the stored depth value another object must be blocking the path from
the fragment to the light source, and it is therefore in shadow.

The shadow map algorithm was first proposed by Williams in 1978 [Wil78],
and perhaps the most important addition to it has been the paper by Segal et al.
[SKv+92], in which they noted that the required computations are very similar to
the ones required for perspective correct texture mapping and therefore already
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implemented in hardware. See [ERCwn] for a detailed description of how this is
accomplished. Since shadow maps can be hardware-accelerated it is quite fast,
and it is used in many real-time applications today. Its most important advantage
is its versatility: it can cast shadows from and onto everything that can be rendered
by the application, the only exception being objects with semi-transparent areas1.
It has one major drawback however: the discretization and limited precision of
the shadow map can result in very visible artifacts, for example in the form of
jagged shadow edges. Even though many improvements has been suggested the
pixel precise shadows, seen in for example the stencil shadow algorithm, have not
yet been achieved.

3.2 Stencil shadows
Crow presented the stencil shadow algorithm in 1977 [Cro77] under the name
projected shadow polygons. In 1991 Heidmann suggested[Hei91] to use the sten-
cil buffer to implement Crow’s original algorithm which gave the algorithm the
name by which it is best known today. Stencil shadows belongs to the group of
volumetric shadow algorithms as the shadowed volume in the scene is explicit in
the algorithm.

The basic idea in the algorithm is to generate, for each object and light pair,
the volume which is in shadow from the light. When shading a fragment it must
then be determined if it is inside any of these volumes. This idea is depicted in
figure 3.1. The shadow volumes are the gray areas where the two spheres cast
shadow. The volumes should ideally extend to infinity, but it is sufficient that
they extend to the far side of the geometry. We will elaborate on the extension
of the volumes later. When shading a pixel we trace a line from the eye to the
fragment and count the number of entries into shadow and the number of exits
out of shadow. If the number of entries are greater than the number of exits the
point must be in shadow, otherwise it is lit by the light2. Take f.ex. the point p1.
This point is in shadow since the number of shadow volume entries (1) is greater
than the number of exits (0). Point p2 on the other hand is not in shadow since
the number of entries and exits are both 1. Note how this approach also works
across multiple shadow volumes where the ray passes all the way through one or
more shadow volumes before reaching the pixel. Point p3 is correctly classified as
being in shadow since the number of entries (2) is greater than the number of exits
(1). This approach assumes that the view point is outside any shadow volume. An

1Transparent areas in a texture are handled correctly if they are 100% transparent.
2Other methods for determining whether a pixel is inside a volume or not are possible but the

line-trace algorithm is close to the one suggested by [Cro77] and lends itself nicely to hardware
acceleration.
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improvement that removes this restriction will be described in section 3.3.

Figure 3.1: Stencil shadows: Rays from eye to pixel

As we are only interested in a fragment’s color if it is visible, (i.e. not covered
by fragments closer to the eye), we can think of the lines from the eye to the frag-
ments as view rays beginning at the eye, going through the center of a pixel on
the screen, and hitting the first visible fragment in the scene. The view rays count
the number of entries and exits and we can therefore determine whether the ray is
in shadow or not when hitting the fragment. By emitting view rays from the eye
through all pixels on the screen we would then have the shadow information for
the final image. Fortunately, it is not necessary to do actual ray tracing to imple-
ment this, but that is the conceptual idea of the algorithm. Before we describe a
different implementation, we first examine how to model the shadow volume.

3.2.1 The shadow volume
The stencil shadow algorithm assumes that shadow casters consist of an opaque
triangle mesh and that light sources are modeled as points, (i.e. have zero radius).
A shadow mesh can the be build consisting of ordinary, but invisible, geometry
which models the actual shadow volume. For a single triangle it would consist of
three quads3, each extending from a triangle edge to infinity, away from the light.
More precisely, the line where two quads meet extends through the corresponding

3Quadrangle is usually shortened to quad.
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vertex in the exact opposite direction of the vertex to light direction. Figure 3.2 is
an illustration of this.

Figure 3.2: Shadow volume for a single triangle.

For a general mesh it is not necessary to create quads from all edges. Con-
sider two triangles sharing an edge. If both triangles face the light then a quad
extending from the shared edge would be unnecessary since it would represent
neither an entry nor an exit from the shadow volume. At first glance it would
appear that the edges which ought to generate the shadow mesh should be those
on the silhouette4 of the mesh, (as seen from the light). However, there are at
least three reasons why this is not a good approach. Firstly, the silhouette is, in
general, a collection of parts of edges and this would complicate the generation of
the shadow mesh. Secondly, if we only create quads from the silhouette we would
not calculate correct self-shadowing5 in all cases. Finally the computation of the
silhouette is quite expensive. We therefore use a simpler approach and generate
the shadow mesh from the contour edges. These are the edges which have either
only one front-facing neighboring triangle, or where two neighboring triangles
have different orientations toward the light, (i.e. where one is facing towards and
the other away from the light). To calculate the contour edges we start by creating
a list of all edges and a data structure through which we can find the neighboring
triangles for a given edge in constant time. This is a precalculation step whose
result remains valid as long as the connectivity of the mesh does not change, (the
vertices can change position without affecting connectivity, so it is possible to
have animated meshes). To calculate a shadow mesh we then make a single pass
through all edges and calculate whether they are a contour edge or not. Given the
previous definition and data structure we see that this can be done in constant time

4The silhouette is the outer edge of an object as seen from a particular point
5Self-shadowing occurs when a part of an object cast shadow on another part of the same

object.
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for a single edge. The calculation is therefore linear in the number of edges in the
mesh.

Note that for the algorithm to work it is not necessary for the shadow mesh to
be closed at the top or bottom. It would seem that view rays could then enter and
exit the volume without counting entries and exits correctly, but this is not the case.
A view ray can never pass through the missing bottom of the shadow mesh since
the bottom is at infinity and the fragment is therefore closer. It cannot pass through
the missing top either because we have assumed that the shadow generating mesh
is opaque. The fragment will therefore be on the shadow generating mesh, or
possibly in front of it, stopping the ray before it enters the shadow volume.

3.2.2 Using the stencil buffer
Emitting view rays and tracing them through the world would suggest a ray-
tracing implementation but, as Heidmann suggested in 1991 [Hei91], given both
a stencil and z-buffer it is possible to use a rasterization approach.

Since we are not interested in the actual number of shadow entries and exits
only whether the first is greater than the latter, we introduce the shadow value
which is the difference between the two. A shadow value greater than zero then
means that a fragment is in shadow. The basic idea in the stencil shadow algorithm
is to let the shadow value be stored in the stencil buffer and update its value for
all pixels covered by a shadow mesh triangle, instead of calculating it for a single
pixel before moving on to the next. The z-buffer is used to determine whether the
fragment on the shadow mesh triangle is in front of or behind the corresponding
fragment on the geometry.

Figures 3.3, 3.4 and 3.5 show how the stencil values are updated. In the figures
we see, in a 2d ’side view’, some geometry, a shadow caster, a light source and
a view point. The stencil buffer is visualized on the far left. To make the figures
simpler we have used a parallel projection onto the stencil buffer, and the stencil
value for a fragment can therefore be found by moving horizontally to the left.
In figure 3.3 we see the initial setup where the stencil buffer is cleared to zero.
In figure 3.4 we see the effect on the stencil buffer after the first shadow mesh
triangle, (the fat line), has been rendered. This triangle is front facing and all
values between the lines l0 and l1 have therefore been incremented to one as a
front facing shadow mesh triangle represents an entry into shadow. Values below
l1 have not been affected as the geometry was in front of the shadow mesh triangle
and consequently the z-buffer test has culled away those fragments. In figure 3.5
the second shadow mesh triangle has been rendered. This triangle is back facing
and will therefore decrement the stencil values since it represents an exit from
shadow. This has been done between the lines l2 and l3. Again, values below l3
has not been affected because of the z-buffer test. We end up with the stencil-
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Figure 3.3: Stencil values: before rendering shadow triangles.

Figure 3.4: Stencil values: after rendering one shadow triangle.
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Figure 3.5: Stencil values: after rendering two shadow triangles.

buffer containing the value one in the area between the lines l3 and l1, and the part
of the geometry that is in shadow corresponds to this area exactly.

The algorithm that uses this basic idea is a multi-pass algorithm. In the first
pass it renders the scene once to fill the z-buffer. In the second pass it renders the
shadow meshes to fill the stencil-buffer, as described above. In the final pass it
renders the scene once again to add the light contribution from the light source.
However in this pass the stencil test is used to cull away fragments where the
stencil value is less than or equal to zero. This prevents the rendering from taking
place in the shadowed areas. A more detailed description is:

1. Clear color-buffer, z-buffer and stencil-buffer.

2. Render the scene with only ambient and emissive lighting.

3. Disable writing to color-buffer and z-buffer, enable stencil-buffer.

4. Render all front facing shadow mesh triangles, incrementing the stencil
value when passing the z-test.

5. Render all back facing shadow mesh triangles, decrementing the stencil
value when passing the z-test.

6. Re-enable writing to color-buffer, set z-buffer test to equal, set stencil test
to pass when value is less than 0 and use additive blending.
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7. Render the scene with only diffuse and specular lighting.

Step 2 ensures that all fragments, including those in shadow, have both am-
bient and emissive lighting and serve to fill the z-buffer. Step 3 ensures that the
shadow mesh rendered next does not affect the color-buffer, (directly at least), and
that we can use the values in the z-buffer without overwriting them. Steps 4 and
5 are the essential ones that perform the counting of entries and exits as described
above. Step 6 sets the z-buffer test to equal, ensuring that only the exact same
fragments, that were visible in the first pass, are rendered. Step 6 also enables
additive blending, meaning that the calculated color will be added to the previous
content of the color-buffer, and sets up the stencil test so that only the pixels, (or
rather their corresponding fragments), which are outside shadow will be rendered
again.

One way to render only front facing or back facing triangles is to use the CPU
to classify the triangles into these two categories and then only render the cor-
rect subset of the mesh. Another way is to use the GPU’s capabality of rejecting
triangles based on the order the vertices appear in when projected to the screen.
If the triangles of a mesh are generated with a consistent ordering, either clock-
wise or counterclockwise, the projected order of their vertices determines whether
they are front or back facing. Triangles are usually generated using a clockwise
ordering of their vertices. Rendering only front facing triangles can then be ac-
complished by letting the GPU cull away all counterclockwise triangles. The
entire shadow mesh can then be rendered in steps 4 and 5, and while this may
seem wasteful at first, it allows the hardware to perform the orientation calcula-
tion and minimizes state changes as well as the amount of data sent to the GPU.
More importantly, it allows the use of two sided stencil as described below.

So far we have assumed that there is only one light-source in the scene, which
is rarely satisfactory. Fortunately it is easy to generalize the algorithm to handle
multiple light-sources. The steps involved are:

1. Clear color-buffer and z-buffer.

2. Render the scene with only ambient and emissive lighting.

3. For all lights l:

(a) Clear stencil-buffer, disable writing to color-buffer and z-buffer, set
z-buffer test to less-than.

(b) Render all front facing shadow mesh triangles generated by l, incre-
menting the stencil value when passing the z-test.

(c) Render all back facing shadow mesh triangles generated by l, decre-
menting the stencil value when passing the z-test.
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(d) Re-enable writing to color-buffer, set z-buffer test to equal, set stencil
test to pass when value is 0 and enable additive blending.

(e) Render the scene with only diffuse and specular lighting from l.

This is a simple extension of the algorithm on page 24. After the first pass,
which fill the z-buffer, we loop over all lights in the scene. Since the shadowed
areas for one light is completely independent from those of other lights we must
clear the stencil buffer before each light pass, which then proceeds exactly as
previously defined. The additive blending ensures that we end up with the sum of
the light contributions from each light plus the ambient and emissive light.

3.3 Improving stencil shadows
The stencil shadow algorithm, as described above, is easy to implement and by
using the stencil buffer it can be hardware-accelerated and is therefore quite fast.
Unfortunately it has a very serious drawback, which limited its use in applications
for years: it does not work when the eye point is inside, or very close to, a shadow
volume since the volume will be cut open by the near clip plane, resulting in the
view rays missing a shadow-volume entry. We will now describe how to overcome
this problem along with some optimizations for the algorithm.

3.3.1 Carmacks reverse
In 2000 Carmack suggested[Car00] a slightly different approach which entails that
the view rays are traced from infinity towards the eye, stopping when encountering
the pixel on the geometry that is closest to the eye. This reversal of the view
rays’ direction has given the algorithm the name Carmacks reverse. The two
different approaches have also been named zpass and zfail, as the stencil buffer in
the original algorithm is changed only when a fragment passes the z-test. As we
will show below, Carmacks reverse can be implemented by changing the stencil
values only when the z-test fails for the fragment, i.e. by using the z-fail stencil
operation.

When using zfail the shadow mesh must be closed in both top and bottom.
Figure 3.6 shows two cases where the lack of a top and bottom in a shadow mesh
would result in incorrect shadow count for the shown pixels. In the leftmost part
we see an example where the reversed view ray enters the shadow volume through
the missing bottom and therefore fails to count a shadow entry. The fragment will
therefore be shaded as if it was affected by the light, even though it is clearly in
shadow. In the rightmost part of the figure, we see the reversed view ray entering
the shadow volume through the sides and therefore counting an entry correctly.
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The ray then proceeds through the shadow casting object, which is exactly where
the top of the shadow mesh ought to be and the ray therefore fails to count an
exit. The shadow-casting object will therefore always appear to be in shadow and
even the areas of the object facing the light will be shadowed, which is obviously
wrong.

Figure 3.6: Lack of top and bottom in the shadow mesh

Generating the required top and bottom ’cap’ for a general mesh can be com-
plicated, but assuming a closed6 mesh it is much simpler. For a closed mesh we
can use the front facing triangles, as seen from the light, as the top cap. The bot-
tom cap can then be generated from the back facing triangles by extruding them
away from the light, as described in section 3.2.1. Since the mesh is assumed to be
closed, all edges have exactly two triangles connected to it. The silhouette edges
are therefore those whose triangles have different facings with regard to the light.
From the above we know that the back facing triangle has been extruded away
from the front facing one, tearing open the mesh. To close the shadow mesh we
insert a quad at every silhouette edge connecting the top, which is in its original
position, and the bottom, which is now at infinity.

Given the closed shadow mesh, we can implement the zfail algorithm by using
the steps described on page 24 with a few changes. When rendering front facing
triangles we decrement the stencil value when a fragment fails the z-test, and when
rendering back facing triangles we increment the stencil value when the fragment
fails the z-test. This implements the tracing of a line from infinity towards the eye
since all shadow mesh triangles behind the visible geometry now affect the stencil
values, and since those triangles that are back facing to the view position are now
front facing to the view ray.

Assigning a vertex a position at infinity is not a problem, we simply use ho-
mogenous coordinates and set the w component of the vertex to zero. However,

6What we actually need, is that each edge in the mesh is connected to exactly two triangles,
but this is the same as having the intuitive property of being closed: There is an ’inside’ and an
’outside’ of the object and we cannot move between them without passing through one of the
triangles.
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with a regular projection matrix those vertices would be clipped by the far clip
plane and in this case it would mean that the bottom of the closed shadow mesh
would be clipped away, resulting in the reversed view ray missing a shadow vol-
ume entry. There are at least three ways to correct this problem. As Everitt and
Kilgaard suggest[EK02], it is possible to create a projection matrix which places
the far plane at infinity, meaning that it will never clip any triangles. In the same
paper they suggest the use of depth clamping7 which achieves the same thing
without using a special projection matrix.

The third solution to the problem is to use an extrusion distance less than
infinity. The extrusion distance is the distance the vertices of the bottom cap of
the shadow mesh are extruded away from the light. We can use an extrusion
distance which places the bottom of the shadow mesh so far away from the light
that the contribution from the light behind the bottom is zero or negligible. This
makes sense for attenuated light sources whose light contribution decrease with
increasing distance. Directional lights on the other hand, which are conceptually
located at infinity, are of course not attenuated and as a result, it is hard to calculate
an extrusion distance that is guaranteed to be big enough. Even for attenuated
point lights it is easy to construct cases where any finite extrusion distance is too
short.

In figure 3.7 we see a light source, a shadow casting object and the correspond-
ing shadow mesh. The sphere of influence is the distance beyond which the light
does not affect the shading of a fragment. The extrusion distance has been chosen
so the vertices are outside the sphere of influence but the shadow mesh still leaves
a non-shadowed region, which is lit by the light although it should not be. Choos-
ing any finite, (and fixed), extrusion distance we see that it is possible to move the
light so close to the shadow casting object that we still have a non-shadowed re-
gion. Of course it is possible to calculate the required extrusion distance for each
case, but this requires that we, at each vertex, have information about all triangles
which the vertex is part of. This complicates an otherwise very simple algorithm,
and more importantly, this information is not available in a vertex shader. This
implies, that vertex shader shadow volumes, as will be described in section 3.3.3,
cannot be used.

By choosing a large extrusion distance it is also possible to make a shadow
mesh big enough to be clipped by the far plane. This would then require us to use
either a far plane at infinity or the depth clamp approach anyway. The finite extru-
sion distance solution is therefore not without problems but there is one aspect that
makes it interesting: performance. Making the shadow volume smaller means that
its projected screen size will also be smaller which reduces the number of stencil
operations. This can have a significant impact on performance. Furthermore, the

7Depth clamping is currently only available in OpenGL using the NV_depth_clamp extension
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Figure 3.7: Shadow mesh extrusion distance.

artifacts introduced are usually not very obvious since the non-shadowed region is
usually small and in an area where the light has been attenuated so its contribution
is negligible.

The changes to the original algorithm described above enable correct shadow
calculation when the eye is inside a shadow volume and is actually a very robust
and practical algorithm. The extra cost incurred by the added top and bottom of
the shadow volume is well spent in most applications.

3.3.2 Two-sided stencil testing
Another change to the algorithm is the use of two-sided stencil testing8. This is
a new feature in recent GPUs that allows the application programmer to set up
and use different stencil states and operations for back facing and front facing
triangles respectively. With this functionality it is possible to exchange steps 4
and 5 of the algorithm on page 24 with a single step that renders all triangles just
one time, without any orientation based culling. The GPU then decides which
triangles are front and back facing and uses the correct stencil tests and operations
according to the orientation. This reduces the CPU load of issuing render calls
to the driver, reduces the amount of vertices that have to be transformed through
a vertex shader, and reduces the amount of mesh data that has to be sent to the
graphics card over the AGP bus. The net result is a significant performance gain.

3.3.3 Vertex shader calculation of shadow mesh
With the addition of programmable vertex shader functionality another significant
change to the algorithm is possible. The calculation of the shadow mesh can be
moved from the CPU to the GPU, which of course lifts a burden from the CPU
but, more importantly, it also means that the shadow mesh data can be sent to the

8First proposed in [EK02]
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GPU once instead of every frame as was previously necessary9. The idea is to
give the GPU a copy of the shadow casting mesh, but one where it is possible for
every edge to stretch and become a quad on the side of the shadow mesh. This is
accomplished by inserting a quad of zero width between every edge of the mesh.
Figure 3.8 shows four triangles and how the edges between them are replaced with
quads. The leftmost picture shows the original triangles. In the middle picture all
edges have been replaced with quads, which should be of zero width but since that
represent some visualization difficulties we have shown them stretched a bit. In
the rightmost picture, we see the leftmost triangle extruded a bit away from the
others. The quads bordering this triangle have been stretched accordingly while
all the others have zero width and are therefore invisible.

Figure 3.8: Vertex shader shadow mesh.

Since a vertex shader calculates the projected-space position of a vertex, the
vertex shader can take all the points belonging to back facing triangles, (as seen
from the light), and extrude them away from the light. All points belonging to
front facing triangles are projected to their usual positions. To determine whether
a point belongs to a front or back facing triangle the vertex shader must know
the face normal of the corresponding triangle. This is necessary since the shader
cannot access the other points that constitute the triangle and therefore cannot
calculate the normal itself. This is not a problem as the face normal is simply
stored in the vertex data in the same manner as when using the normal to calculate
lighting. For the edges that contain quads which are not stretched, the quad will
still have zero width and therefore covers no pixels and contributes nothing to
the shadow calculation. Section 6.5 shows the vertex shader code for extruding a
mesh.

The only problem with this approach is that the number of triangles in the
shadow mesh grows a lot. We will now analyze exactly how much. A triangle is
bounded by exactly three edges and, since the mesh is closed, an edge is incident
to exactly two faces. Therefore a single edge ’generates’ two times one third of a
face. Assuming t is the number of triangles and e the number of edges we have:

t =
2e

3
⇐⇒ e =

3

2
t

9As long as a mesh is unchanged the graphics card can cache it in AGP memory, but to change
it the application has to modify a version in system memory and upload it again.
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A VS shadow mesh10 contains two new triangles for each edge plus the orig-
inal triangles. So the number of triangles in the shadow mesh t′ is related to the
original number of triangles as:

t′ = t + 2e = t + 2
3

2
t = 4t

The shadow mesh must also contain new vertices. In fact, the original trian-
gles can no longer share vertices since it must be possible for each of them to be
extruded separately. The quads, however, share the vertices with the triangles they
separate, hence the number of vertices in the shadow mesh v ′ is:

v′ = 3t

The number of vertices in the original mesh can be calculated from Euler’s
formula, which states that:

v − e + t = 2

so we have that:

v −
3

2
t + t = 2 ⇐⇒ v = 2 +

1

2
t ⇐⇒ t = 2(v − 2)

and therefore:

v′ = 3t = 3 ∗ 2(v − 2) = 6v − 12

This means that there are four times as many triangles and about six times as
many vertices in a VS shadow mesh as in the original mesh. Of course a regular
CPU-calculated shadow mesh also has additional triangles, but a VS volume is the
’worst-case scenario’. However, given the performance characteristics of current
GPUs where vertex processing is cheap compared to sending data from the CPU to
the GPU, the VS shadow volumes still performs better than regular CPU volumes.
The table below shows performance measurements in FPS for the screen-shots
shown in figures B.1 to B.411:

Location CPU volumes VS volumes Difference
B.1 7.5 18.5 146%
B.2 24.0 33.5 39%
B.3 14.0 61.0 335%
B.4 38.0 39.0 3%

10Vertex shader shadow mesh.
11The test was carried out on a 900MHz AMD Athlon with an ATI Radeon 9700 Pro in a

1024x768 resolution with per-pixel lighting.
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As is seen in the table, the performance difference varies a lot: from almost
nothing to a four times increase. This is the result of the number of shadow vol-
umes in the four scenes. In scenes with very few shadow volumes the work load
introduced by either method is so small that the difference in performance is mim-
imal. This is the case in the fourth location in the table above. But in scenes with
lots of shadow volumes (animated volumes in particular) the VS volumes lead
to great performance gains due to the fact that they need not be calculated and
transferred to the graphics card every frame.

3.4 The single-pass stencil shadow algorithm
The stencil shadow algorithm described on page 25 is the ’correct’ version of the
algorithm in the sense that it adds contributions from a light source to a fragment
only if that fragment is not in shadow from the light. This implies that the algo-
rithm must render the scene one time for each light-source12. There exists another
algorithm13 which renders the scene only once. It can be described as:

1. Clear color-buffer, z-buffer and stencil-buffer.

2. Render the scene with all lights enabled.

3. Disable writing to color-buffer and z-buffer, enable stencil-buffer.

4. Render all front facing shadow mesh triangles from all lights, incrementing
the stencil value when passing the z-test.

5. Render all back facing shadow mesh triangles from all lights, decrementing
the stencil value when passing the z-test.

6. Re-enable writing to color-buffer, disable z-buffer test, set stencil test to
pass when value is less than 0 and set additive blending.

7. Render a dark full-screen overlay.

This algorithm first identifies all those areas on the screen that are in shadow
from one or more light sources, and it then darkens these areas by a constant
amount as a post process. It is usually referred to as the single-pass stencil shadow
algorithm while the other version is often called the multi-pass stencil shadow al-
gorithm. Note that the improvements described earlier, (Carmacks reverse, two-
sided stencil etc.), concern how we find shadowed areas from a particular light

12This is not completely correct, see section 5.4 for optimizations.
13We have been unable to find the inventor of the algorithm.
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source. These improvements are valid for both algorithms since the distinction
between the single-pass and multi-pass algorithm is how we use the shadow in-
formation.

The multi-pass algorithm identifies the areas which are in shadow before
adding the contribution from a light-source. The single-pass algorithm approx-
imates this by adding the contribution from light-sources both in shadowed and
non-shadowed areas and later compensates for this by subtracting a constant
amount of light from the shadowed areas. The multi-pass algorithm is obviously
the most correct of the two as the single-pass algorithm assumes that the contribu-
tion from all light-sources to all fragments is a constant, which can subsequently
be removed by subtractions. This assumption is wrong for several reasons: dif-
ferent light sources can have different colors, light sources are usually attenuated,
shadows from different light-sources can overlap each other, etc. All these factors
contribute to a bad approximation, where shadows tend to look unnatural. See
figure B.7 for a comparison of the two techniques.

Notice that the single-pass rendering has a constant colored shadow region,
covering all pixels that are in shadow from at least one light source (but not nec-
essarily both). As a consequence the sides of the box are darkened, even though
a light shines directly on both of them. Another problem is that the shadow is
constant colored. Where the two shadows from the barrel cross there should be
a darker area, since none of the lights affect this region. Using the multi-pass
algorithm all these problems have been rectified.

The only redeeming property of the single-pass algorithm is the performance
characteristics. The single-pass algorithm renders the scene once, and for every
fragment it calculates the light model for all the lights. The multi-pass algorithm
renders the scene once for every light source, each time calculating the light model
for a single light only. This means that the single-pass only calculates the trans-
formation and projection of vertices once, whereas the multi-pass does this for
every light. Both algorithms calculate the light model approximately the same
number of times. Since vertex processing was a limiting factor on older systems
multi-pass was very expensive. Current hardware, however, has relatively higher
vertex processing power and the use of multi-pass is therefore possible. We have
collected performance numbers for both algorithms on the scenes, viewed in the
screen-shots in figures B.1 to B.4. The table below shows the results14. The sec-
ond and third column show the number of FPS for the two algorithms, and the last
column shows the performance drop when going from single to multi-pass.

14The experiment was performed on a 900MHz AMD Athlon with an ATI Radeon 9700 Pro
GPU with per-vertex lighting.
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Location Single-pass Multi-pass difference
B.1 20.0 18.5 8%
B.2 36.0 28.5 21%
B.3 75.0 61.0 19%
B.4 50.0 43.0 14%

As the table shows there is a performance penalty for using the multi-pass
algorithm, these measurements suggests about 15%. However, the performance
is extremely dependent on the amount of optimization for both algorithms, and
these numbers are therefore valid only for our engine in its current version. But
the numbers do show that it is possible to use the multi-pass algorithm in a full-
fledged game engine, and we are convinced that the increase in visual quality is
well worth the performance penalty.

3.5 Approximations to the rendering equation
As described in section 2.1.2, the rendering equation can serve as a standard for
other light models to be measured against. Equation 2.5 is the formulation most
suited for this purpose. In this section we will examine how the standard lighting
model described in section 2.2.4 and the single and multi-pass shadow algorithms
described above can be seen as approximations of this equation. The rendering
equation is formulated at a very high level of abstraction, giving us a compact
description of a lighting model which captures only the essential elements. In the
description below we will link the equations to the more implementation-minded
description given above.

The standard lighting model in real-time applications described in section 2.2
can be formulated in the spirit of the rendering equation as:

L = v0Le + v0TLe0

The first addend is the direct light from a point, i.e. the light reflected zero
times. If we look at equation 2.6, Le corresponds to the xemission and the global
ambient term. The visibility function v0 is the hidden surface removal calculated
by the z-buffer. The zero subscript means that it is the visibility for the last reflec-
tion of light, i.e. it is the visibility between fragments and the camera.

The second addend is the light reflected one time. v0 still operates on this
factor, otherwise we would see light reflected off fragments which the z-buffer
has determined to be invisible. Le0

is the emitted light, but the zero subscript
means that we allow only point light sources15. The T operator is therefore not

15Usually only a fixed number of lights are allowed. The fixed function pipeline allows eight.
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an integral, as in the rendering equation, but simply a sum over the contribution
from these light-sources which corresponds to the sum over the N light sources
in equation 2.6. Note that the reflected term is missing a visibility operator which
would otherwise make it v0Tv1Le0

, where v1 is the visibility function for the next-
to-last reflection of light. The standard lighting model does not include this term,
which means no shadows are calculated.

The single-pass algorithm can be formulated as:

L = v0Le + v0TLe0
− (1 − ṽ1)K

where K is a constant that determines how ’dark’ shadows are. It resembles
the standard lighting algorithm, the only difference being the subtraction of a con-
stant where there is ’shadow’. The shadowed regions are determined by the ṽ1

function which approximates the true v1 function. If ṽ1 is zero, (and 1 − ṽ1 is
one), we ’darken’ the fragment by subtracting a certain amount of light. The ṽ1

function is calculated by the stencil buffer as described in section 3.4, and the rea-
son that it is an approximation is that it computes visibility for all light sources in
a single pass. This approximation is wrong since it entails that a fragment will be
darkened by the same amount regardless of how many light sources that cannot
affect it because of shadow. As described above this results in shadows that are
notably different from the correct shadows of the multi-pass algorithm.

The multi-pass stencil shadow algorithm can be formulated in the following
way:

L = v0Le + v0Tv1Le0

Since the multi-pass algorithm calculates visibility for each light source sepa-
rately, the visibility function for reflected light is therefore the ’true’ v1 function.
This is the essence of the differences between the single- and multi-pass algo-
rithms: the single-pass uses the stencil buffer once to calculate an approximate
visibility for all light sources in one pass, whereas the multi-pass uses the stencil
buffer once for each light, calculating the true visibility function each time. The
multi-pass algorithm is therefore a good approximation to the first two terms of
the rendering equation. The only restrictions are, that light sources are only al-
lowed to be points and that, for performance reasons, we can only handle a small
number of them.

The soft shadow algorithm will allow a better approximation, although the
difference in this formulation seems small:

L = v0Le + v0Tv1Le1

where Le1
means (a few) spherical light sources with individual radii. This

extension to spherical volume lights means that we now consider infinitely many
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points as light emitters. However the points must be located on the surface of
spheres, each sphere conceptually being a single light source. Since a visibility
function is evaluated for every point on the light source the result is soft shadows.
In practice a single visibility function for the entire light sphere is implemented
giving a percentage value representing how much of the conceptual light source
is visible from the light-receiving point. An algorithm that implements this is
described in chapter 4.
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Chapter 4

Soft shadows

The shadows generated by the techniques described in the previous chapter have
one flaw in common: they are hard. The transition from light to shadow happens
over just two pixels: one is fully lit by the light source, the next is in full shadow.
This is not due to a flaw in the calculations as such, but is a consequence of the
limitation of the techniques: light sources must be points and only direct illumi-
nation is calculated. Real world shadows are usually soft with a smooth transition
from full light to full shadow. This happens for two reasons: indirect illumination
and volume light sources, exactly what the previous algorithms could not incor-
porate. Light sources with a non-zero volume cause soft shadows because there
are points where a part of the light is visible, this is called the penumbra region
and is illustrated in figure 4.1. The area where nothing of the light is visible and
the geometry is in full shadow is called the umbra region.

Figure 4.1: Volume light sources produce penumbra regions.

Indirect illumination also tends to ’soften up’ a shadow. This is illustrated in

37



figure 4.2, where the dashed lines represent indirect illumination which bounces
off the wall and into the umbra region. Different areas of the umbra will receive
different amounts of indirect illumination. In most cases the intensity of the re-
ceived indirect light will grow weaker when moving from an area near the shadow
boundary to an area further away from it, and the shadow will thus appear less
hard.

Shadow caster

Shadow border

Indirect illumination

point light

Figure 4.2: Indirect illumination ’softens’ an otherwise hard shadow.

Simulating full global illumination, including the indirect illumination shown
above, is very hard to do in real-time but, as we shall see in the following, it is
possible to render shadows from volume lights to produce soft shadows.

Our work with soft shadows has been based mainly on a series of articles,
[AMA02], [AAM03] and [ADMAM03], in which the authors first suggested and
later refined and implemented a technique for rendering soft shadows from ar-
bitrary shadow casters onto arbitrary surfaces with real-time performance using
pixel shaders. When we began our research only the first of the three papers had
been published and, as a result, our own implementation differs from theirs on
several key points. On our own, we did come up with some of the same improve-
ments and implementation techniques that they suggested in the later papers, and
we interpret this as an indication that the ideas and techniques are sound.

We have also developed several new optimizations which greatly reduce the
length of the required pixel shaders, the number of rendering calls made to the
graphics driver, and the amount of texture memory required for look-up tables
used in the shaders.

In this chapter we first describe the soft shadow technique as it appears in
its final incarnation set forth by Akenine-Möller and Assarsson in [ADMAM03].
Then we describe our optimizations and discuss their impact on the overall per-
formance of the technique. Finally, we discuss a number of problems that remain
unsolved due to hardware limitations.
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4.1 Soft shadows using penumbra wedges
The hard shadow algorithm, as described in section 3.2, uses the stencil buffer to
mask out those regions of the screen that are in shadow. The problem with this
approach is that the stencil buffer gives a sort of on/off write mask: either a pixel
is rendered with full lighting or it is skipped entirely. To render soft shadows we
must instead modulate each pixel with a light intensity factor that ranges from
zero, when the pixel is in full shadow, to one, when it is fully lit. So the main goal
of the soft shadow algorithm is to efficiently calculate a screen sized light intensity
buffer, from now on referred to as the LI buffer, as described in [AMA02]. Once
the LI buffer has been calculated the scene is rendered with diffuse and specular
lighting, with each pixel being modulated by the corresponding value in the LI
buffer. In a final pass, ambient lighting is added to all pixels in the image. In the
following we will assume that only one object casts a shadow from the light.

4.1.1 Overview
As described in [AAM03], the soft shadow algorithm is an extension of the stan-
dard stencil shadow algorithm, and the calculation of the LI buffer starts by clear-
ing it to one, indicating that all pixels are fully lit by the light. Next, the hard
shadow for the object is rendered into the buffer in the usual way, setting the in-
tensity to zero for all pixels that are inside the hard shadow. After this step, if
we used the LI buffer to modulate the lighting without any further processing,
the result would be hard shadows identical to those produced by using the stencil
buffer.

Outer penumbra
Inner penumbra

Hard shadow

Figure 4.3: The hard shadow splits the penumbra

As seen in figure 4.3 the hard shadow splits the penumbra region into an inner
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and outer penumbra, and the idea is now to ’soften up’ the shadow around this
hard shadow edge. In the inner penumbra region we must add light to compensate
for the hard shadow algorithm which has set the intensity to zero, even though the
pixels can ’see’ up to half of the light at the hard shadow edge. Similarly, in the
outer penumbra region we must subtract light from those pixels the hard shadow
algorithm has deemed fully lit, even though some of them can ’see’ as little as half
the light. Eventually we would like to end up with a gradient that decreases from
1 on the outside of the shadow to 0 when it enters the umbra region. At the hard
shadow edge we should have an intensity of 0.5, as this indicates the border where
exactly half the light is visible.

This adjustment of the LI buffer is made using pixel shaders and a special
rendering primitive called a penumbra wedge, (from now on referred to as just
a wedge), as described in [AMA02]. A wedge is created for each edge on the
shadow silhouette and is a closed piece of geometry constructed to bound the
penumbra region generated by that particular edge. By rendering the wedges with
a special pixel shader, we are able to adjust the LI buffer as required to soften up
the hard edge. We will cover exactly how this is done in a later subsection, but
first we describe the wedge and its creation in more detail.

4.1.2 Wedge creation

edge

Figure 4.4: Hyperbolic penumbra volume for a spherical light source.

The exact penumbra region for a given edge and light source can be found by
sweeping a general cone from one vertex of the edge to the other. The cone is
generated by reflecting the light source through the sweeping point on the edge.
It is not feasible to calculate the exact penumbra volume in real-time, nor is it
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necessary, as we shall see later. It is worth noticing that, assuming a spherical
light source, the exact penumbra volume will generally have hyperbolic sides, (see
figure 4.4), which also makes it unsuitable for tessellation into triangles, a process
that would be required to render the volume. Instead, the wedge is created as a
bounding volume for the penumbra region and a robust method for calculating
this is presented in [AAM03].

The wedge is generated as follows: let a silhouette edge e be defined by the
two vertices e0 and e1. First it is determined which of the two vertices is closest
to the center of the light; assume that this is e0. Then the other one, e1, is moved
towards the center of the light until the distance to the center is the same for both
vertices. We denote this new vertex e′1. The two vertices, e0 and e′1, define a new
edge, e′, above the original silhouette edge which will be used as the top of the
wedge structure. Note that this new edge is only used for rasterization purposes.
The original silhouette edge is still used for the actual visibility calculations in the
pixel shader, as we shall see later. Now, because both endpoints of e′ are the same
distance from the light, the swept cone from e0 to e′1 will generate planar front and
back sides for the wedge and, because we chose to keep the closest vertex fixed,
the wedge will fully contain the penumbra region, see figure 4.5.

Rather than actually sweeping a cone over e′, the front and back planes of the
wedge are calculated by rotating the hard shadow plane around e′ so it exactly
touches the light source on the other side. The planes for the left and right sides
of the wedge are calculated in a similar way by rotating a plane around axes that
are perpendicular to e′. The intersection of these four planes, along with a bottom
plane some fixed distance away from the light, creates a closed hull: the wedge,
illustrated in figure 4.6. Notice how the wedge structure fully contains the actual
penumbra volume as swept over the original silhouette edge.

4.1.3 Culling away unnecessary fragments
A wedge is a 3d primitive and when seen in perspective from the side, the render-
ing of its front facing triangles will trigger the pixel shader for more pixels than
those actually residing within the penumbra region on the screen. The greater the
angle between the view direction and the light-to-edge direction is, the greater the
amount of wasted pixels will be. However, using the stencil buffer it is possible
to cull away most of those unnecessary pixels, as described in [ADMAM03]. An
important observation here is that, as the penumbra lies on the geometry of the
scene, it is only necessary to execute the pixel shader where the wedge volume
intersects the scene geometry. To mask out this area, the front faces of the wedge
are rendered into the stencil buffer, setting the stencil value to 1 where the pixels
pass the z-test. This masks out the grey area seen in the upper-left part of figure
4.7. To actually execute the pixel shader in the intersection region, the back faces
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e0

e1

e’1

Figure 4.5: Planar front and back sides of penumbra volume.

+

front side

right sidee0

e’1

e1

left plane right plane

Front view

wedge top

front plane back plane

Side view

wedge top

Figure 4.6: Generation of a wedge.
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of the wedge are rendered with the z-test set to ’greater’, and the stencil buffer
configured to only draw where the stencil value is 1. Rendering the back faces
with this z-test is the same as rendering those pixels on the back faces that fail the
ordinary z-test, as shown in the upper-right part of figure 4.7, and by enabling the
stencil buffer we have effectively masked out the intersection of the two regions.
As a result, the pixel shader is only executed where the wedge intersects the ge-
ometry, as shown in the bottom part of the figure. Note that as the wedge does
not represent the exact penumbra volume, the pixel shader can still be executed
for pixels outside the penumbra region and care must be taken to leave such pixels
unchanged.

Front faces that passes z-test

Backfaces that fails z-test

Intersection area

Figure 4.7: Masking out the intersection between a wedge and the scene.

4.1.4 Modifying the LI buffer
To modify the LI buffer we must somehow calculate the light visibility factor
for each fragment of the scene geometry that falls within the penumbra region.
The first things we need for this calculation are the position of the fragment, the
silhouette edge and the light in some common space. As the light position is
fixed for all fragments in a particular frame, we can easily upload it as a constant
to the pixel shader in any space we want. The positions of the vertices of the
edge are also fixed for an entire wedge and can either be calculated in the vertex
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shader, or, if the wedges are rendered one at a time, be uploaded as constants to
the pixel shader in the space we want. Therefore, the challenge lies in finding
the position of the scene fragment behind the wedge fragment currently being
shaded, in any space. For technical and performance reasons we have chosen to
do the calculations in view-space, but [ADMAM03] presents a solution where the
calculations are done in world-space instead. In view-space, the position of the
scene fragment behind a certain fragment on the wedge is formed as the tuple,
(x, y, z), where x and y are the same as for the wedge fragment position and z is
the depth value stored in the z-buffer. See figure 4.8. Once all these positions are
known in view-space, it is possible to calculate a visibility factor for the fragment,
as we shall see in the following.

Geometry position

Rasterized wedge fragmentView space origin

Scene geometry

Figure 4.8: Calculating geometry position behind wedge.

To calculate how much of the light is visible from a particular fragment in
the penumbra with respect to just a single silhouette edge, we project the hard
shadow quad up onto the light, as seen from the fragment. Assuming a spherical
light source, this is the same as first projecting the edge onto a circle and then
tracing lines from the center of the circle through each projected edge vertex. A
coverage value can now be defined as the percentage of the light source that is
covered by this projection, and it is simply calculated as the area covered by the
projection divided by the total area of the light circle. See figure 4.9 for examples
of this projection.

Notice that for any fragment within the penumbra region this coverage value
will lie between 0 and 0.5, being 0.5 for fragments on the hard shadow edge. For
fragments in the outer penumbra region the coverage value defines how much of
the light source is hidden by the occluding geometry while, in the inner penumbra
region, it actually defines how much of the light is visible from the fragment. This
means that the coverage value can be used to modify the LI buffer to create the
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a) both vertices outside light source b) one vertex inside light source

Figure 4.9: Projecting the hard quad onto the light source.

gradient. In the outer penumbra the coverage value defines how much light that
needs to be subtracted and, in the inner penumbra, it defines how much light to
add. See figure 4.10.

Coverage: 0.50.1 0.30.2 0.4 0.1

Add lightSubtract light

Coverage to gradient

LI buffer LI buffer

Figure 4.10: Modifying the LI buffer based on coverage.

4.1.5 Summing up coverage contributions
Until now, we have only considered a single silhouette edge when calculating the
coverage value for a fragment. In reality, the silhouette form loops, (see [Ass03]
pp. 133–135), and, to properly calculate the final coverage for a fragment, it is
necessary to project the entire silhouette onto the light source. This is unfortunate
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since, as described earlier, the pixel shader cannot access any other information
than what is given to it through constant registers and the rasterizer. This makes it
impossible for the pixel shader to have anything more than local knowledge of the
silhouette. Fortunately we can use Green’s theorem, as described in [AAM03], to
calculate the final coverage as a sum of coverage contributions, evaluated at one
silhouette edge at a time. To add or subtract each contribution, when evaluating
Green’s theorem, is based on the fragments position in the penumbra, i.e. whether
light should be added or subtracted as described above. As the penumbra regions
for neighboring silhouette edges will overlap in an area around the shared edge
vertex, the pixel shader will be executed multiple times for each fragment in that
part of the penumbra region, (one time for each edge). As a result, after all the
wedges have been rasterized the final coverage value is available as the sum of
the contributions. Refer to figure 4.11 for two examples of how to calculate the
final coverage with Green’s theorem. In the first example, one edge is front facing
to the fragment while another is back facing. This means that the fragment is in
the outer penumbra region of the first edge and in the inner penumbra region for
the other. Coverage values for the outer penumbra are added to the total coverage
value, while coverage values for the inner penumbra are subtracted, (since the
coverage value for fragments in the inner penumbra defines how much of the light
is visible instead of how much is covered). In the second example, both edges are
front facing to the fragment, so both are added to the final coverage value.

a) one positive and one negative coverage contribution

b) two positive coverage contributions

Figure 4.11: Calculating coverage with Green’s theorem.

4.1.6 Summary
To summarize, the steps for creating the LI buffer are:

1. Clear the LI buffer to one, indicating that every pixel is fully lit.
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2. Render the hard shadow into the LI buffer, setting the light intensity to zero
for pixels inside the hard shadow.

3. For each silhouette edge in the object, create its wedge geometry.

4. Render the wedges with a special pixel shader, one at a time, and mask out
the intersection area between the scene geometry and the wedge to minimize
the amount of rendered fragments outside the penumbra region.

5. For each wedge fragment rendered, (pixel shader steps):

(a) Calculate the view-space position of the scene fragment behind the
wedge.

(b) Determine if this fragment is in the inner or outer penumbra region.
(c) Project the silhouette edge for the wedge up onto the light source, as

seen from the fragment.
(d) Calculate a coverage value from this projection.
(e) Based on the position of the fragment, either add or subtract the cov-

erage value from the LI buffer.

The interesting steps in the pixel shader are those where the edge is projected
into the light source to calculate the coverage value, and this is also where the
majority of the pixel shader instructions are spent. We will not go into any further
details on how Akenine-Möller and Assarsson choose to implement those steps,
but the interested reader can refer to their papers for some implementation details.
We will instead focus on our own implementation and in the next section, we
describe how we have optimized those steps to greatly reduce the amount of pixel
shader instructions and the amount of texture memory required for look-up tables.

Due to certain hardware problems and limitations it is not possible to imple-
ment the algorithm exactly as specified in the pseudo-code above. Like Akenine-
Möller/Assarsson, we have been forced to work around some of these hardware
limitations. We refrain from mentioning them in the algorithm outline above as
they do not affect the basic idea in the algorithm, and as some of them will be
overcome by newer and better hardware. We will discuss the problems in section
4.3.

4.2 Fast coverage calculation for spherical light
sources

In this section we describe our novel technique for highly efficient coverage cal-
culation for spherical light sources. In [ADMAM03], a technique for coverage
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calculation for spherical light sources is presented. The technique relies on clip-
ping the projected silhouette edge to the boundaries of the light source in the pixel
shader. The two clipped 2d points can be used as texture coordinates for a lookup
in a 4d texture which implements the coverage function. Using our technique we
can avoid these clipping operations in the pixel shader and let the texture sampler
do the clipping for free. We also reduce the dimension of the coverage func-
tion from 4 to 3, which enables us to encode the coverage function in a smaller
texture. In [ADMAM03] Akenine-Möller/Assarsson also present coverage calcu-
lation techniques for rectangular and even textured rectangular light-sources. Our
new technique cannot be used in these cases since it is a fundamental require-
ment that light-sources are spherical, but for most applications this is a reasonable
limitation.

4.2.1 Unit sphere space
For our coverage calculation technique to work we need to work in a space where
the light source is not just spherical but actually a unit sphere. This is done by
applying a change-of-basis matrix, (from now on referred to as the CBM), to the
light position, the silhouette edge and the fragment position. This CBM simply
scales the three coordinate axes in R3 with the inverse light radius and looks like
this:

CBM =
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Because the CBM only has entries on the diagonal, it can be reduced into a
scaling of the vector it is applied to, like this:
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This scaling can be made in a single shader instruction per point that needs to
be transformed. And as described above only the fragment position needs to be
calculated in the pixel shader so the cost of working in unit sphere space is just
a single pixel shader instruction. In the following we will assume that everything
has been transformed into unit sphere space.

4.2.2 Coverage calculation
To calculate the coverage value for a specific fragment we first calculate the plane
through the silhouette edge and the fragment. This can be thought of as a ’tilted
hard shadow plane’ and we refer to it in the following as the geoP lane. Next, the
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signed distance from the light source to the geoP lane is calculated, call this dis-
tance for d0. If d0 ∈ [−1..1] then the plane intersects the light source, and the frag-
ment is actually within the penumbra region and not just inside the wedge. The
sign of d0 also determines whether the fragment is in the inner or outer penumbra
region. If d0 is positive the fragment is in the outer penumbra, if it is negative it is
in the inner penumbra. If d0 is exactly zero the fragment lies on the hard shadow
edge. This classification determines whether we should add or subtract light to
the LI buffer1. Then, the light source is projected onto the geoP lane to a point
we will call the basePoint. Now we can define the lightP lane as having origin
at the basePoint and a normal in the direction from the basePoint towards the
fragment. The intersection between the light source and the lightP lane gives us
the 2d circle onto which we want to project the silhouette edge, as described in
earlier sections. Refer to figure 4.12 for a 2d side view of the planes and points
described above.

Note that if we project the infinite line on which the silhouette edge lies onto
the light, then the basePoint lies somewhere on this projection. In addition, when
we project the two ends of the silhouette edge onto the light they will also lie on the
line, either on the same side of the basePoint or one point on each side. Now we
calculate the distances from the basePoint to each of the two projected ends and
denote them d1 and d2. We can calculate the coverage value given four pieces of
information: the absolute value of d0, the value of d1 and d2, and whether the two
projected ends are on the same side of the basePoint or not. Figure 4.13 illustrates
this. Note that due to symmetry we are able to rotate the original coverage area
around the circle center as well as mirror it around the two coordinate axes without
changing the actual coverage value. As a result of this, we can represent any
coverage area as one of the two forms in the figure. Also note that even though
the figure might indicate it, it is not a requirement that both or even any of the
projected points are actually within the light source.

Each of the three parameters has valid values only when they are within the
range [0..1]. When d0 reaches 1 the coverage value will be 0, no matter what the
distances to the end points are, and the same can be said for any value greater than
1. Consequently it is safe to simply clamp d0 to be at maximum 1. To calculate
the coverage value the two projected ends are first clipped against the light source.
As the light is a unit sphere, the maximum vertical distance from the basePoint
to the circle edge is 1, and this only occurs when d0 is equal to zero. For all other
values of d0, the vertical distance from the basePoint to the circle edge will be
less than one. So also the two other parameters, d1 and d2, can be clamped to be
within the range [0..1].

1In reality, due to hardware issues, another technique is currently used for this classification.
We will cover this in a later section.
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Figure 4.12: The geoPlane, lightPlane and basePoint.
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d2

d0
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a) End points on different sides b) End points on same side

d2

d1

Figure 4.13: Parameterized coverage calculations.
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Assuming that each parameter lies within its valid range, we can now encode
the coverage function into two 3d textures: one texture for the case where the
points are on the same side of the basePoint; and another for the case where they
are on different sides.

The clamping of the three texture coordinate components could be done in the
pixel shader before sampling the look-up texture but that is not necessary. Instead
we use the built-in clamping option in the texture sampler which performs the
desired clamping for free.

To determine which of the two coverage maps the pixel shader should sample,
it calculates the dot product between the two vectors going from the basePoint to
each of the two projected edge points. If the two points are on the same side of the
basePoint, the angle between these two vectors will be zero and therefore the dot
product will be positive. If, on the other hand, the two points are on different sides
of the basePoint, the angle will be 180 degrees and the dot product negative. If
one or both of the edge end points should be projected exactly to the basePoint
this will result in one or both of the vectors being the zero vector and, as a result,
the dot product will be zero. In that case, either of the two coverage textures can
be used, so it does not really matter much which branch the pixel shader takes.
In our implementation a dot product of zero would use the coverage texture for
points on different sides of the basePoint.

4.2.3 Optimization summary
In [ADMAM03] Akenine-Möller/Assarsson report that their latest hand-
optimized version of the pixel shader for spherical light sources requires 59 arith-
metic pixel shader instructions and 4 samples into look-up textures.

Our version uses just 40 arithmetic pixel shader instructions and 3 texture
samples on graphics cards without dynamic branching in the pixel shaders. On
cards with dynamic branching the amount of texture samples are just 2. With
dynamic branching the pixel shader can simply sample the correct texture, but if
there is no dynamic branching the pixel shader must sample both textures, and
choose the correct value afterwards.

As mentioned earlier our pixel shaders are all written in CG and we have not
attempted to optimize the output from the compiler by hand. Consequently, it
might be possible to save a few instructions this way to improve performance
further.

In [AAM03] Akenine-Möller and Assarsson presents a method for parameter-
izing the coverage calculation as a four-dimensional function using two 2d points
as indices, so each index is in the form (x1, y1, x2, y2). As 4d textures are not
supported by any current graphics card, the function is encoded into a 2d texture
where (x1, y1) determines which region, (or sub texture, as they call it), to sample
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in, and (x2, y2) looks up the actual coverage value from that region. They report
that a discretization of the light source into 32 × 32 regions provides acceptable
precision in the coverage function and, as a result, the size of their look-up texture
is 1024×1024 pixels. Storing each coverage value as a 16-bit floating-point value,
the amount of texture memory required for their look-up texture is thus 2MB. In
addition to this 2d coverage texture they also use a cube map that implements the
function atan2(x, y). They do not report the size of this cube map but whatever it
is it must be added to the total texture memory cost.

Using our new technique the coverage function is reduced from a four-
dimensional into a three-dimensional function and, with a similar discretization
of the light source, our two 3d textures uses just 65KB each (32*32*32*16bit for
each texture). The small size means that the textures can easily be created at load
time and need not be precalculated and stored in a file.

4.3 Problems with the soft shadow technique
Several problems have yet to be solved before this technique for creating soft shad-
ows can be applied to a general game scene with real-time performance. Some of
these problems are related to limitations in current hardware, and will likely dis-
appear within the next few generations of graphics cards. Other problems are
related to the technique itself and changes to the algorithm are required to over-
come them. In this section we discuss each identified problem along with the
temporary solution or work around we have applied to implement the technique
on today’s hardware.

4.3.1 Access to the z-buffer
One of the first steps in the pixel shader is to calculate the view space position of
the scene fragment behind the wedge fragment that is currently being rasterized.
The x and y components of this position is copied from the view-space position
of the wedge fragment being rasterized, while the z component is the value in the
z-buffer at the current pixel location.

The problem is that the z-buffer value at the current pixel location isn’t avail-
able through the pixel shader API. At the moment, the only feasible solution for
using the z-buffer’s data in a pixel shader is to do an extra pass over the entire
scene, using shaders to output the depth of each fragment to a texture. The texture
can then be sampled from the pixel shader that needs the depth information. Some
GPUs can render to multiple render targets at the same time and in such cases the
’extra’ z-buffer can be rendered during the normal rendering of the scene, thus
avoiding the extra pass. However, a screen-sized texture is still required and it
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uses a significant amount of texture memory. In addition, the extra fill-rate used
to fill the depth texture has a negative impact on the overall performance of the
application.

No specification exists for how depth information must be stored within a
z-buffer surface and, as a result, the different graphics card manufacturers use
all sorts of tricks to compress and pack the z-buffer to achieve maximum per-
formance. This also means that it is expensive to access the z-buffer data, as is
evident in for example DirectX where it gets increasingly difficult to lock and ac-
cess the z-buffer with each new version. Still a read-only access to the depth value
of the current pixel might be available from pixel shaders in a future generation
of graphics card2. When, or if, this happens it can be used to optimize the soft
shadow algorithm and save some much needed bandwidth for the rendering of the
wedges.

4.3.2 Limited blending
With the latest generation of graphics cards the concept of floating point tex-
tures were introduced. These allows the application programmer to create textures
where each channnel contains a 32-bit signed floating point value. A texture with
just a single float channel would be perfect for the LI buffer in the soft shadow
algorithm since the light visibility factor is just a single float value in the range
0 to 1. To update the LI buffer we would need to be able to add or subtract the
contributions from the different wedges. Presently the only way to let the output
from a pixel shader depend on the previous value in the render target is to use the
fixed-function blending operation. However the blending capabilities of current
hardware is quite limited. It is possible to both add and subtract values from a
render target through the blending operation, but not without changing a render
state in the driver. In other words, it is not possible to decide whether an addition
or subtraction is to be performed for each seperate pixel. A solution to this might
be to set up the card to always do addition and then output negative values for
those pixels where a subtraction is required. Unfortunately this is not feasible as
the output from a pixel shader is automatically clamped to lie within the range
[0..1].

To overcome this problem one could use a texture format with two channels,
for example two channels with unsigned 16-bit floating-point values is also possi-
ble. All positive visibility contributions could then be accumulated, using normal
additive blending, in the first channel while all negative contributions could be
added together in the second channel. The final light visibility factor could then
be calculated in a pixel shader as the first channel minus the second channel. Us-

2Conversation with Richard Huddy from ATI, ShaderDay 2003 at DTU
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ing this approach the light visibility factor would still have 16 bit precision which
is enough to avoid ’banding’ in the gradient.

Unfortunately, on current graphics cards blending is not supported at all on
render targets with more than 8 bits per color channel, a limitation which effec-
tively means that the new floating-point textures cannot be used for the LI buffer.

Due to this we have used a standard four channel ARGB texture format with
8 bits per channel as the LI buffer in our current implementation. Two of the
channels are used to hold the integer contributions from the hard shadow pass,
much like a stencil buffer would, and with 8 bits per channel, we can thus have 256
overlapping hard shadow volumes. As suggested above the other two channels
are used to hold the positive and negative gradient contributions from the wedge
pass. A certain number of the bits in each penumbra channel must be reserved for
overlaps and in our implementation, we use 3 bits for overlap and 5 bits for each
coverage contribution. Using just 5 bits for the coverage values means that only
32 different shadows shades are available, which can lead to visible ’banding’
effects when viewing the penumbra region of a shadow up close. Still, using 5
bits for the gradient offers a decent image quality. For complex shadow casters
more than 8 overlapping wedges can occur and more bits will have to be reserved
for the carry, leaving even less for the actual gradient. See figure 4.14 for a close
up section of the penumbra gradient using 8, 5 and 3 bits.

Figure 4.14: Banding artifacts
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In [ADMAM03], a method is briefly mentioned by which the authors split
each coverage contribution into multiple channels, obtaining a 12 bit gradient
with 16 possible overlaps at the expense of extra pixel shader instructions and
additional bandwidth use. We have chosen not to use this technique as we will
instead await the next generations of graphics cards which will hopefully allow for
blending to floating point render targets. Even better, the frame buffer blending
might become a truly customizable component like the vertex and pixel shaders
already have3. Once better blending is available, the soft shadow algorithm can
easily be changed into using a single channel 32-bit float texture, as outlined in the
beginning of this subsection, allowing for high precision gradients with a virtually
unlimited amount of overlapping edges.

4.3.3 Splitting the wedges in two halves
As described above, the classification of a fragment into the inner or outer penum-
bra region decides whether light should be added or subtracted from the LI buffer.
For every pixel this classification must match the hard shadow classification per-
formed in the hard shadow pass. If for example, a pixel is classified as being in
the outer penumbra in the wedge pixel shader, but the same pixel has had its light
visibility set to zero during the hard shadow pass, then light will be subtracted
from a pixel whose LI value is already zero. Similarly, it could happen that light
is added to a pixel the hard shadow pass has not marked as being in shadow. Such
errors result in very visible artifacts where pixels appear overly bright or overly
dark within the penumbra region.

It ought to be impossible for such an error to occur if the classification of each
fragment was made in the same way during both the hard shadow and the wedge
pass, but in reality it does occur for pixels at or very near the hard shadow plane.
The reason is that the hard shadow pass is made by rendering a normal shadow
volume into the LI buffer. Each triangle in the hard shadow hull is sent to the
rasterizer, which discretizes the otherwise mathematically continuous surface into
a finite number of fragments, each with integer coordinates. This means that the
hard shadow edge, as rendered into the LI buffer, is not the mathematical correct
intersection between the shadow volume and the underlying geometry. As a result,
it is impossible to mathematically classify a certain fragment as being inside or
outside the hard shadow from the pixel shader.

A solution is presented for this problem in [ADMAM03] where each wedge
is split into two halves, one for each of the inner and outer penumbra regions. By
’embedding’ the hard shadow hull in the planes that split the wedges, it is now

3According to Richard Huddy from ATI a mechanism for implementing custom frame buffer
blending operations will appear in future generations of graphics cards.
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possible to ensure that, when rendering for example the inner half of each wedge,
the pixel shader will not be run for pixels near the hard shadow edge in the LI
buffer that hasn’t been set to zero. Similarly, when rendering the outer wedges the
pixel shader will only subtract light from pixels that are left fully lit by the hard
shadow pass.

The intersection between each wedge half and the scene geometry can be sten-
ciled out to cull away unnecessary pixels exactly as described earlier, and the clas-
sification step is now no longer necessary. Instead, a constant can be uploaded to
the pixel shader that determines whether to add or subtract light for all the ren-
dered fragments.

4.3.4 Rendering one wedge at a time
Perhaps the most severe problem with the algorithm in its current form is that the
wedges must be processed and rendered one at a time. This is a consequence of
the problem described above where each wedge is split into two halves to avoid
rendering artifacts near the hard shadow edge. This solution removed the classifi-
cation step, and the algorithm now relies solely on the stencil and depth buffer to
determine which pixels the shader should add light or subtract light from. How-
ever, as seen in figure 4.15, this can lead to problems when wedges overlap.

A

B

L

problem areas

Figure 4.15: Problem with overlapping wedges.

Figure 4.15 shows the intersection between two whole wedges, A and B, and
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the scene geometry. If both inner wedge halves were to be rendered at the same
time, the first step would be to stencil out the intersection between them and the
scene, this area is marked out in gray on the figure. Now, when rendering the
inner wedge half of wedge A, the pixel shader will also be executed for pixels
in A’s outer penumbra region that intersects with B’s inner wedge half, (marked
as the left problem area in the figure). Since these pixels are actually within the
penumbra region for wedge A, the pixel shader will calculate a non-zero coverage
value for them. Moreover, since we are currently rendering inner wedge halves, a
constant will have been uploaded to ensure that this coverage value is added to the
LI buffer. As a result, light is added where in fact it should have been subtracted.
For other wedge configurations than the one shown in the figure a similar problem
can be identified when rendering multiple outer wedge halves at the same time.

Therefore the wedges must be rendered one at a time. In fact, there are mul-
tiple rendering steps involved in rendering just a single wedge. To stencil out the
intersection each wedge half is first rendered to the stencil buffer only and then
rendered once more with the pixel shader enabled. So a total of four render calls
are made for each wedge.

This is a very serious problem because, as described in [Wlo03], there is a
small but still significant CPU cost to each draw call made to the graphics driver.
It is reported that a 1GHz CPU can issue just around 250004 draw calls at 100%
CPU usage. With four draw calls per wedge and a desired real-time frame rate
of 30FPS that gives us about 200 wedges, (or silhouette edges), per frame per
gigahertz of the CPU. In general, game scenes generate many times this number
of silhouette edges5, even with just a few light sources visible, and the CPU thus
becomes the major bottleneck in the algorithm.

This is unsatisfactory for several reasons. First, the speed of current CPUs are
magnitudes too slow and it is therefore unlikely that increases in CPU speeds will
overcome the problem anytime soon. Moreover, as GPUs currently evolve faster
than CPUs, the graphics detail, and thus the number of silhouette edges, will likely
increase faster than the CPU speed thereby making the problem worse over time.
Secondly, even if the CPU power was available it is unfortunate to spend a large
amount of CPU power on just issuing draw calls. In a game, the CPU is needed for
many other things such as visibility determination, AI, sound, collision detection
and game scripts.

From the discussion above we conclude that if the soft shadow technique is to
be used in a real game an algorithmic change that allows a large number of wedges
to be rendered at the same time, with a single draw call is necessary. We have be-
gun work in this field and have come up with a technique that reduces the number

4The exact number might vary slightly for different graphics cards and drivers.
5We easily reach 5000 silhouette edges or more for simple scenes in our game engine.
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of draw calls from one per wedge to one per silhouette loop. Unfortunately, our
current implementation of this new technique works only for a limited group of
objects, namely those with convex silhouette loops. We describe this technique
in more detail in section 4.4 and present benchmark results in section 4.5 to back
these claims.

4.3.5 Fill-rate problems
For simple scenes, where the number of draw calls is low, we have identified
another bottleneck, this time on the GPU. Our observation is that performance is
quite dependent on screen resolution. From this we conclude that the algorithm is
either limited by the amount of pixel shader instructions executed or on the amount
of fill-rate used. We have already put forth a solution to reduce the number of pixel
shader instructions, (see section 4.2), so there is not much we can do regarding the
pixel shader, except await new generations of graphics cards with faster and better
pixel shader components.

Regarding the fill-rate we have identified a problem caused by hardware lim-
itations, which our current implementation suffers from. As described above we
use a 32-bit four-channel ARGB texture as our LI buffer in our current implemen-
tation. Two of the channels are used during the hard shadow pass while the other
two are used in the wedge pass. None of the passes reads or writes to channels
used by the other pass. The final light visibility factor is calculated from all four
channels but the calculation is performed in yet another pixel shader, which only
reads from the LI buffer.

This means that we could split the LI buffer up into two 16-bit textures with
two channels each, one texture for each of the two passes. If this was possible,
we could reduce the fill-rate from 32 bits to 16 bits for each rendered fragment in
both the hard shadow and wedge pass, in effect cutting the total fill-rate in half.
The price for this optimization would be that the shader calculating the final light
visibility factor would have to sample two LI buffer textures instead of one, but
the sum of the sampled data would still be 32 bits per fragment.

In fact, a suitable texture format exists on current graphics hardware but un-
fortunately it cannot be used as render target with support for blending, which is a
requirement to implement our LI buffer. Again, in future generations of graphics
cards we expect to be able to customize the blending step from within the pixel
shader allowing us to implement the LI buffer as a single-channel floating point
surface with either 16 or 32 bits precision thus reducing the required fill-rate.
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4.4 The per-loop algorithm
In this section we outline our new technique which allows us to batch together the
rendering of multiple wedges into a single draw call, thus overcoming the major
CPU bottleneck we identified in section 4.3.4. The new technique also allows us
to use the original non-split wedges, described in section 4.1.2, without sacrificing
a pixel-precise classification of whether a fragment is located in the inner or outer
penumbra region. This reduces fill-rate, vertex transformations, and the size of the
data transferred over the AGP bus each frame, (in the case of animated geometry
or lights). Unfortunately, the method does not work for general shadow casters.

The original version of the soft shadow algorithm performs two different clas-
sifications regarding each fragment: whether it is in hard shadow or not, this is de-
termined in the hard shadow pass; and whether it is in the inner or outer penumbra
region, which is decided in the pixel shader used for the wedge pass. As explained
in section 4.3.3, these two classifications must match exactly or visible artifacts
will occur. Splitting the wedges in halves solves the problem, but consequently
each wedge must be rendered separately.

Another solution to the problem is to perform both classification steps in the
same place, namely in the wedge pixel shader, using the same data to make the
classifications. That way we can make sure the two classifications will match.

Figure 4.16: Silhouette with three edges projected onto the light plane.

In figure 4.16 we see three connected silhouette edges, projected onto the light
plane as described in section 4.2.2. The determination of whether a fragment is in
the inner or outer penumbra region, with respect to a single edge, is determined
by the center of the sphere being in front of the single projected edge or not,
as explained above. The determination of whether a fragment is inside the hard
shadow area or not is determined by whether the center of the sphere is covered
by the projection of all the connected silhouette edges onto the light. Figure 4.16
therefore shows the projection for a fragment outside hard shadow.

We see that while the classification of a fragment being in the inner or outer
penumbra region is an ’edge local’ property, the classification of being inside
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or outside hard shadow is not. However hard shadow is not a global property
either. For a particular light source a fragment can be covered by shadows from
many different objects. Being inside the hard shadow region from one shadow is
independent of other shadows. The silhouette edges from a shadow-casting object
form loops, (see [Ass03] pp. 133–135), and each loop can be thought of as a single
shadow, each with a hard shadow region. Hard shadow is therefore a ’silhouette
loop local’ property.

If we assume that the silhouette loops form convex shapes, when projected
onto the light plane, then a fragment is in hard shadow if, and only if, it is in the
inner penumbra region for all the edges of the loop. We can therefore let the wedge
pixel shader use a channel in the render-target for ’hard shadow data’. Concretely,
we can let the shader add 1 to this channel if the fragment is in the outer penumbra
region for a wedge, thus flagging that the fragment cannot possibly be in hard
shadow. After rendering all the wedges of the silhouette loop, a subsequent pass
can then determine whether a fragment is in hard shadow simply by checking if
the ’hard shadow data’ channel is still zero, the value it is cleared to. Besides this
hard shadow data value, the wedge pixel shader also outputs a coverage value,
calculated as in the original algorithm, that it either adds or subtracts from the LI
buffer, based on its classification. Using this approach, the wedge pixel shader
effectively performs both classification steps and no rendering artifacts appear
near the hard shadow edge.

The considerations above form the basis of our new algorithm, in which we
reduce the number of render calls made to the graphics driver by batching together
all wedges for each silhouette loop. Since the number of edges in a silhouette loop
is at least 3, (and often much higher), this addresses the CPU bottleneck of the
original algorithm, as identified in section 4.3.4.

We now describe some of the details that are necessary for an actual imple-
mentation of our idea. First of all, the calculation of the final LI value used to
modulate the light is a bit more complex than in the original algorithm. The
subsequent pass mentioned above that checks for the hard shadow property must
be implemented in a pixel shader which we will call the coverageTransfer pixel
shader. This pixel shader calculates the loop local LI value from the output of the
wedge pixel shader, and transfers it to the final LI-buffer. In our implementation,
the loop local LI values are simply added together to form the final LI value6.

The coverageTransfer pixel shader has two main cases: either a fragment is in
the penumbra region or it is not. This can be determined by checking if the cover-
age value, the difference between the positive and negative coverage contributions
from the wedge pixel shader, is non-zero. If it is non-zero, the fragment must be

6As described in [ADMAM03] section 5.1, this is not entirely correct and it would be possible
to use the suggested average value instead.
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within the penumbra region since the wedge pixel shader has only been run on
fragments inside this region. Now we check whether the fragment is in the hard
shadow region, which can be done by determining whether the hard shadow data
value is still zero, as explained above. If the fragment is in hard shadow then 1
must be added to the coverage value, (in the original algorithm this is performed
in the hardshadow pass). If we are outside the penumbra region then the cover-
age value is calculated purely based on the hard shadow pass, which must still
be performed in our new algorithm to shadow the fragments in the umbra region.
Section 6.4 shows the CG code for the coverageTransfer pixel shader.

From the account above we see that the wedge pixel shader can no longer
render directly into the final LI-buffer. Instead we use a buffer called the Loop-
Buffer to hold the loop local LI values. As with the LI buffer, it must currently
be implemented with a 4-channel 32-bit ARGB surface since we need to be able
to blend (add) values to it. The first channel is used for the hard shadow pass to
flag those fragments that are in the umbra region, exactly as in the stencil buffer
algorithm. The second channel is used for the hard shadow data flag and the last
two channels are used for the positive and negative coverage contributions from
the wedges. The LoopBuffer is set as render-target when rendering both the hard
shadow pass and the wedges, and is used as a texture when running the coverage-
Transfer pixel shader.

To summarize the above, a step-by-step description of the per-loop algorithm
is given here:

1. Clear final LI-buffer.

2. For each silhouette loop L:

(a) Clear the LoopBuffer and set it as render-target.

(b) Render the hard shadow for L.

(c) Render the wedges in L.

(d) Set the final LI-buffer as render-target and the LoopBuffer as texture.

(e) Render a screen-sized quad with the coverageTransfer pixel shader.

3. Use LI-buffer to modulate lighting as usual.

Unfortunately, there are several problems with this algorithm. Firstly, we have
assumed that the projection of silhouette loops is convex, and this is generally not
the case. Non-convex loops make the determination of being inside or outside
the hard shadow much harder and currently we have no solution for this problem.
Secondly, the rendering of a silhouette loop is followed by the coverageTransfer
pass, which is expensive since it executes a pixel shader for every pixel on the
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screen. In addition, the LoopBuffer, a screen-sized render-target, has to be cleared
for each silhouette loop. Finally, the number of render calls can still be high, as
complex models can have many silhouette loops.

The many extra pixel shader executions and the clear operation for each silhou-
ette loop become the performance bottleneck of the new algorithm, and, because
of this, the per-loop algorithm is quite slow, generally slower than the original
algorithm. However the per-loop algorithm has an interesting property: it is GPU
limited, whereas the original algorithm is CPU limited because of the large num-
ber of render calls. As described above, since the graphics cards currently evolves
much faster than CPUs, this might be a good tradeoff.

Note also that some optimizations could be implemented to improve the per-
formance of the per-loop algorithm. An example of this is that, it is not necessary
to execute the coverageTransfer pixel shader for every pixel on the screen, only
for those affected by the rendering of the silhouette loop, which might only be a
small fraction of the pixels on the screen.

4.5 Performance analysis
We have implemented both the original and our new per-loop version of the soft
shadow algorithm, using our optimized coverage calculation technique for both
versions. In this section, we present some performance measurements that show
how the bottleneck is indeed found in different places for the two techniques.
Four test scenes, as shown in figure B.6, are rendered in two different screen res-
olutions, (640x480 and 1024x768), and on two different CPUs, (an AMD Athlon
900MHz and an Intel Pentium4 3GHz). An ATI Radeon 9700Pro graphics card
was used for all tests. The test have been constructed to gradually increase the
number of lights and objects, and consequently the number of wedges. Below,
two tables summarize the measured performance in FPS.

1024x768 900MHz 3GHz
Scene #wedges Orig. Per-loop Orig. Per-loop
1 4 71.0 68.0 78.0 73.0
2 64 55.0 42.0 59.5 44.0
3 538 13.0 9.0 19.0 8.5
4 756 8.5 6.5 15.0 6.5
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640x480 900MHz 3GHz
Scene #wedges Orig. Per-loop Orig. Per-loop
1 4 175.0 168.0 190.0 179.0
2 64 82.0 103.5 136.5 108.0
3 538 13.0 21.5 35.0 22.0
4 756 8.5 16.0 22.5 16.5

As can be seen from the tables, the original algorithm quickly becomes totally
CPU bound on the 900MHz CPU, and a change in resolution has no effect on the
performance. This is the case for test scenes 3 and 4.

With enough CPU power available, the original algorithm is instead GPU
bound, which is why a similar pattern cannot be found on the 3GHz CPU or
in the two simplest scenes on the 900MHz machine. Still, in the lower resolution
where the technique is less likely to be GPU bound, performance is predictable for
the original algorithm. The drawing of a single wedge requires four passes: two
for each wedge half. Therefore, in test scene 4, there are 3024 render calls just
for the wedges, and the rendering of the hard shadow and the objects themselves
must be added to this number. As explained in section 4.3.4, it is possible to per-
form somewhere around 25000 render calls per 1GHz CPU, if the CPU is used
for nothing else. Assuming this is the case, and rounding the 900MHz machine
to 1GHz, we can expect maximum possible frame-rates of 1GHz*25000/3024 =
8.2FPS and 3GHz*25000/3024 = 24.8FPS for the two CPUs respectively, num-
bers remarkably close to those measured for the original algorithm.

The per-loop algorithm, on the other hand, appears to be totally GPU limited.
For all the test scenes, a decrease in resolution results in a large performance gain.
In addition, performance is comparable for the two CPUs in both resolutions.
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Chapter 5

Shadow management

Rendering a shadow volume is relatively expensive and in an environment with
many light sources and where all objects cast shadows, the amount of shadow
volumes in the scene quickly grows to very large numbers. Consequently it is
very important to be able to cull away the shadow volumes that are outside the
viewing frustum, and thus do not affect the final image, before they are processed
by the graphics card.

In this chapter we first describe a culling technique called ’frustum culling’,
which rejects objects outside the viewing frustum based on their bounding vol-
umes. We then present a method for calculating a bounding volume for VS
shadow volumes. Next, a data structure called a ’scene tree’ is presented. The
scene tree is based upon a quad-tree but has been modified so that it is able to
handle dynamic scenes with moving objects in an efficient way. We describe how
to use the scene tree to accelerate intersection queries between the objects in the
scene and various volumes such as a frustum, sphere or box. Finally, we conclude
the chapter by presenting an optimized version of the multi-pass stencil shadow,
using the culling techniques to speed up the overall rendering of the scene.

5.1 Frustum culling
Along with the near and far clipping plane, the camera defines a frustum shaped
volume that encloses all visible geometry for a particular frame. Only those tri-
angles that are fully contained in or intersect this volume are visible on the screen
and must be rendered by the graphics card, the rest can be culled away and their
processing skipped.

As turns out, it is too expensive to perform this culling check for each indi-
vidual triangle because in the time the CPU spends on culling away a triangle the
GPU can easily manage to render it. Instead, a bounding volume is calculated for
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Figure 5.1: The viewing frustum

a group of triangles that is likely to be relatively close to each other. In [Wlo03],
Wloka reports that anno 2003 the maximum triangle throughput for nVidia graph-
ics cards is achieved by rendering triangles in batches of 500 or more triangles at
a time, so this is also a good size for the triangle groups used for frustum culling.

The idea is that if the bounding volume for such a group is fully outside the
viewing frustum then so are all the triangles it contains. If, on the other hand, the
bounding volume is fully contained in or intersects the frustum then all triangles
inside it are rendered, even if a few (or even most) of them are actually outside the
frustum. In large and complex scenes, the frustum culling technique can quickly
cull away a large percentage of the triangles that are outside the viewing frustum
and thus it can accelerate the rendering of the scene considerably.

Two types of bounding volumes that are often used for frustum culling are the
bounding sphere and the axis-aligned bounding box1.

The intersection test between a sphere and a frustum is simpler and thus
quicker than the test between an AABB and a frustum so it would seem rea-
sonable to use a sphere as the bounding volume. And it is the best choice indeed
for those meshes that are properly approximated by a sphere, but often an AABB

1Often referred to as an AABB, it is a box with sides that are parallel to the X,Y or Z plane. As
its orientation is fixed, it can be described by just two points - a minimum and maximum point.
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gives a much tighter fit around a mesh making it a more suitable bounding volume
as illustrated in figure 5.2. The more ’air’ there is inside a bounding volume, the
greater is the chance that the bounding volume will intersect the frustum without
any of its contained triangles doing so, which is the worst-case scenario in frus-
tum culling. When this is combined with the fact that while it is easy to calculate
a bounding sphere for a mesh it is not trivial to calculate the minimum bounding
sphere, it becomes clear why the AABB is the most common choice for bounding
volumes.

a) Bounding box b) Bounding sphere

Figure 5.2: Bounding volumes

To perform intersection tests between the view frustum and bounding volumes
the frustum is represented as six planes, all with normals pointing towards the
inside of the frustum. In order to check if a single point is within the frustum we
just have to determine whether the point is in front of all six planes. If this is the
case, then the point must be within the volume. Checking a sphere against the
frustum isn’t much harder, we just have to check that the sphere isn’t fully behind
any of the planes. In other words, we must check that the signed distance from the
sphere center to each plane is greater than the negative sphere radius. Determining
whether an AABB and a frustum intersects is a bit more complicated as the AABB
consists of two points that can appear in many different configurations relative to
the view frustum planes. But the main idea is still to check the spatial relations
between the two points and the six frustum planes.

5.2 Bounding a vertex shader shadow volume
For any rigid object with a constant size and position in world-space it is easy
to calculate a bounding volume, and use this for culling. However,as described
above in section 3.3.3, a VS shadow volume is extruded by the vertex shader in a
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direction that depends on the position of the light. This makes it harder to calculate
a bounding volume that encloses the shadow volume because we do not have the
extruded version in system memory. Therefor we cannot simply loop through the
vertices to measure their extent.

What we can do is calculate the AABB for the collapsed shadow volume in
object-space. By simulating the vertex shader, which performs the extrusion of
the shadow volume on this bounding box, we get an extruded box, and the AABB
of this box is guaranteed to enclose the extruded shadow volume also, thus making
it a valid bounding volume; see figure 5.3.

Shadow volume bounding box

Shadow volume

Extruded bounding box

Figure 5.3: Bounding a vertex shader shadow volume

Actually, since we do not need a closed shadow hull for the extruded bounding
box, (we will not render it, we just need its points so we can measure its extent), we
do not need to create a special version of it with degenerate triangles at each edge
as was the case with the normal geometry. Nor do we need to determine which
edges are on the silhouette in order to extrude it. Instead we just extrude all eight
points and calculate our final bounding box by taking the minimum and maximum
points of the eight original points and the eight extruded ones. The resulting
bounding box may be slightly larger than what we would have gotten from the
true extruded box, but it will never be smaller, so it is a valid bounding box for the
shadow volume. The reduced complexity of extruding the box outweighs the fact
that our bounding volume is not as tight a fit as it could be.
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5.3 Scene tree
A scene tree is a data structure into which one can insert the objects in a scene. The
scene tree supports efficient queries to obtain the objects that intersects different
volumes such as a frustum, sphere or box. Often a scene is dynamic, with one
or more animated and moving objects. This implies that our scene tree should
provide fast remove and insert operations so that we can efficiently re-insert an
object when it has moved.

The scene tree we present here is based on a quad-tree2 but has several key
differences which we will describe later. A quad-tree is a rooted tree where each
node has four children, hence the name. Each node corresponds to a 2d square,
and the four children of a node correspond to the four quadrants of this square. As
in any tree structure, the nodes that do not have children are called leaves and is
usually where the data is stored. One application of a quad-tree is to store a set of
points in the plane. In that case, the square of the root node is equal to a bounding
square to all the points, and the tree is then subdivided until no more than one
point resides in each leaf; see figure 5.4.

NE NW SW SE

Figure 5.4: Storing points in a quad-tree

Even though a quad-tree is a 2d structure we can easily extend it to storing
points in 3d. We simply assign a fixed top and bottom y value to each node, f.ex.
taken from the 3d bounding box of all the points, making each node represent a
3d box instead of a 2d square. The tree is still only subdivided along two axes,
namely the X and Z-axis, so each node still has exactly four children3.

In its basic form, a quad-tree has several properties that make it unsuitable
for use as a scene tree though. For example it is not balanced and the depth of
a particular branch depends on the density of the stored items in the region the

2Many sources describe the quad-tree f.ex. [dBvKO00]
3A variant of the quad-tree exists which also subdivides along the Y-axis. As this results in

each node having eight children instead of four, this variant is appropriately called an octree.
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branch covers. This means that when an item is moved and re-inserted in a new
region of the tree new subdivisions may occur which involve allocation of new
leaves, splitting items into these new leaves, deletion of the old leaf etc.

However, we want to be able to set up the scene tree once and for all at load
time and then be able to move items around without making any changes to the
overall structure of the tree. We also want to use the scene tree to store objects,
instead of just points. This means that it is not always possible to subdivide a node
since the objects inside it may overlap each other or the boundaries between two
children. An object can also be fully contained in a node but be unable to fit inside
any of the children. In figure 5.5 objects A and B spans multiple child nodes and
cannot be put into either of them while object C is small enough to be put into the
lower left subdivision.

A

B
C

A

B
C

Figure 5.5: Splitting objects

To overcome the allocation problems, we set up our scene tree as a full hierar-
chy of preallocated and initially empty nodes and leaves. As with the quad-tree,
we start with a bounding box for all the objects we want the scene tree to contain.
However, rather than subdividing the tree until the amount of objects in each leaf
is small enough, we subdivide the tree until the size of each leaf is small enough.
What this size is exactly depends on the objects being stored in the tree, but it
should be at least as large as the smallest object in the scene, (any leaf smaller
than this will not be able to contain any objects anyway). As the tree is intended
to accelerate culling queries, it is actually not desirable to subdivide it all the way
down to the individual objects, so in practice the leaves can be large. In our im-
plementation each leaf has a side length of 5 meters in our virtual world.

To overcome the splitting problem, we extend our scene tree so it can store
objects in the nodes as well as in the leaves. To insert an object into the tree we
’push’ it as far down the tree as possible, putting it in the tightest fitting node or
leaf. As the root node in the scene tree has a box the same size as the bounding
box of the scene it can contain any object in the scene and, as a result, an insertion
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into the scene tree can never fail.
As the removal of an object does not affect the overall structure of the scene

tree it can be performed by simply removing the object from the containing node
or leaf. If objects are assigned a handle to their scene tree node at insertion time,
removal can be done in time O(1). Insertion of an object does not change the
overall structure either, and can be done in time linear in the depth of the tree.
This is O(log2(m)), where m is the maximum of the X and Z side lengths of the
scene bounding box.

Using the implementation described above, it is possible to handle scenes with
dynamic objects efficiently and in typical game scenes, where the amount of mov-
ing objects is relatively small, there is no significant performance hit involved in
re-inserting the moved objects. As a further optimization it is worth noticing that,
over a single frame, a moving object will often only have moved within the node
or leaf that it already resides in, making a re-insertion unnecessary. A check for
this case can performed in constant time using the objects handle to its scene tree
node. Also instead of removing an object and re-inserting it from the root, it is
possible to push the object upwards in the tree until it is fully contained in a node,
and then push it downwards as far as possible. In some cases this method faster
than doing a full re-insertion, but in the worst-case scenario the cost is doubled.

The scene tree can be used to accelerate intersection queries between the ob-
jects in the scene and volumes such as a frustum, a sphere or a box. The main
idea is that if a node’s box is fully outside the volume then all its children must
be outside as well and we can totally skip the sub-tree. If a node’s box is fully
contained in the volume then so are all the objects that the node and its children
contain. Thus, we can include all objects in this node’s sub-tree without any fur-
ther intersection checks. In the final case, where the volume intersects the node’s
box, each object in the node is checked for intersection and the algorithm is called
recursively on each of the four children.

Assuming a roughly equal distribution of objects throughout the scene tree this
means that with a single intersection check large parts of the scene can be culled
away. In figure 5.6, just three checks between the sphere and the node boxes at a
certain level in the scene tree culls away 3

4
of all objects in the sub-tree.

5.4 Efficient shadow rendering
In the following we will assume that all lights are omni-directional point lights
with a finite range. This means that each light source has a sphere of influence
with its center at the position of the light and a radius equal to the light range. The
light cannot affect objects outside its sphere of influence.

The multi-pass stencil shadow volume is described in section 3.2.2. One of the
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Sphere query

Figure 5.6: Culling grey areas with three intersection checks

sub-routines in the algorithm is to render the scene for every light-source while
using the stencil-buffer to allow drawing solely in areas that are illuminated by
the light. If we follow this procedure blindly, we could end up doing a lot of work
that would have no effect on the final image. These are the three main cases where
superfluous work often occur:

1. A light-source does not affect anything in the view frustum. In this case,
both the rendering of shadow volumes for the light and the extra pass over
the geometry is redundant.

2. An object is so far away from a visible light-source that the object receives
no light from it. In this case, the rendering of the object and its shadow
volume is redundant.

3. An object is affected by a light source, but the shadow volume is outside the
view frustum. In this case the rendering of the shadow volume is redundant.

As described in section 5.1, there is an efficient algorithm for checking a
sphere against a frustum so to avoid case number 1 in the list above we simply
have to check the light source’s sphere of influence against the view frustum. If
the sphere is fully outside the view frustum then neither the light source nor its
shadow volumes can affect the final image and we can skip any further processing
of the light. The cost of finding the lights that affect the view frustum in this way
is linear in the total number of lights in the scene, and whether or not to accel-
erate the process through a tree structure depends on the application. In practice,
however, most scenes will probably have relatively few light sources4 and it is
unlikely that simply checking all light sources linearly will result in a significant
performance drop as the ’sphere vs. frustum’ check is fairly cheap.

4Usually less than 100.
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If a light affects the final image, we must render all the shadow volumes it has
caused. Naturally, only those objects in the scene that lie within the lights sphere
of influence can cast a shadow from it. We can therefore find the set of objects that
intersects the lights sphere of influence and render only the shadow volumes for
those. In doing so, we have avoided case number 2 in the list above. Again, there
is an efficient intersection algorithm for AABB vs. sphere checks that we can use
to check the object’s bounding box against the sphere of influence. However, a
scene often contains many objects, and a linear algorithm that checks each object
against the sphere of influence will be too slow. Instead we set up a scene tree,
as described in section 5.3, and use it to quickly find all objects that intersect the
light’s sphere of influence.

Once we have the set of objects that intersects the light’s sphere of influence,
and thus the set of potentially visible shadow volumes, we note that it is possible
for a visible light to cause a shadow volume that is fully outside the view frustum.
To avoid rendering these we simply check each shadow volume’s bounding box
against the view frustum. For shadow volumes calculated on the CPU it is easy
to maintain a bounding box, and for shadow volumes extruded in a vertex shader
we calculate a bounding box as described in section 5.2. Through this last culling
mechanism we have avoided case number 3 in the list and should be rendering
only those shadow volumes that actually affect the final image.

We have used the ideas described above to modify the multi-pass stencil
shadow algorithm and make it capable of rendering large scenes efficiently:

1. Clear color-buffer and z-buffer.

2. Render the scene with only ambient and emissive lighting.

3. For all lights l:

(a) Check l’s sphere of influence against the viewing frustum. If l does
not intersect the frustum we skip it.

(b) Query the scene tree for the set of objects o that intersects l’s sphere of
influence. For every object in o, check the AABB of the l-generated
shadow volume against the view frustum.

(c) Clear stencil-buffer, disable writing to color-buffer and z-buffer, set
z-buffer test to less-than.

(d) For all visible shadow volumes v:

i. Render all front facing triangles of v generated by l, incrementing
the stencil value when passing the z-test.

ii. Render all back facing triangles in v generated by l, decrementing
the stencil value when passing the z-test.
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(e) Re-enable writing to color-buffer, set z-buffer test to equal, set stencil
test to pass when value is 0, and set additive blending.

(f) Render all objects in o with only diffuse and specular lighting from l.

The modification does not affect optimizations of the innermost loop such as
the two-sided stencil technique and Carmacks reverse, described in section 3.3.

Using the above culling procedures does not guarantee that a scene does not
generate too many visible shadow volumes for the graphics card to handle at an
acceptable frame rate. In that case, we can start culling away visible shadow
volumes. As this will result in visual errors, it is important first to cull away the
shadow volumes that contribute least to the final image. We suggest calculating
an ’importance value’ for each visible shadow volume, based on some heuristic,
and then sorting the shadow volumes and rendering the most important ones first.
It is then possible to allot a certain amount of time or triangles to each light and to
stop rendering shadow volumes once that amount has been exceeded.

Two factors can be used in calculating an importance value for a shadow vol-
ume: the distance from the center of the volume to the camera, and the projected
size on the screen of its bounding box. The idea behind the first factor is that we
would rather cull away a distant shadow volume than a close one, as it is likely the
viewer will focus more on geometry in the foreground than in the background. The
idea behind the second factor is that we would rather cull away smaller shadow
volumes as they contribute less to the final image than larger ones.

Determining how to weigh these two factors requires some tweaking and de-
pends on the scene in question. Sometimes a large shadow in the background is
much more important than a small one close to the camera, whereas in scenes
where each shadow volume is approximately the same size one might want to sort
the volumes purely by distance to the camera.
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Chapter 6

Implementation details

To actually implement the techniques discussed so far in this thesis can be a daunt-
ing task with lots of potential pitfalls and caveats. In this chapter we present some
implementation details which was left out in the previous chapters for clarity rea-
sons. We begin by giving the reader an overview of the game engine we have
incorporated the techniques into. Then we present a solution to the seemingly sim-
ple problem of sampling a screen sized texture map at coordinates corresponding
to the current pixel being shaded in the render target. Finally, we present the full
CG source code for the pixel and vertex shaders required to rasterize the penumbra
wedges into the LI buffer.

6.1 The Peroxide engine
As one of our main goals with this thesis was to test the applicability of soft shad-
ows in a true game environment, we implemented our version of the soft shadow
algorithm within our game engine - the Peroxide Engine. A full game engine is a
very complex application and a detailed description of its components is beyond
the scope of this thesis. Still it is important to realize that the added complexity of
a game engine compared to a simple test application can significantly affect the
measured performance of the techniques. In this section, we give a short overview
of the different components and features of our game engine to give the reader an
understanding of the framework in which our experiments have been conducted.

Platform and API independence
The Peroxide Engine has been developed in a platform independent way, which
means that it can run on multiple platforms using several different APIs for graph-
ics, sound and input. At the moment, the engine runs on Linux, using SDL and
OpenGL for graphics and input, as well as under Windows where the DirectX
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framework is used instead. This cross platform feature is achieved by wrapping
all API and platform specific code in ’drivers’ that expose all functionality through
a common interface to the main game engine. A number of such drivers exist in
order to provide access to the different categories of platform specific code:

OS Provides OS specific code for timing functions, file selection dialogs, dialog
boxes etc.

GfxDriver Provides an abstraction to everything having to do with graphics. Ex-
amples of this includes wrappers for vertex buffers, state management on
the graphics card, drawing code, and shader management.

InputDriver Provides an interface to the mouse and keyboard. Does also imple-
ment functionality to bind callback functions to key or mouse events.

SoundDriver Provides an interface to the playback of music files, as well as to
2d and 3d sound effects.

NetDriver Provides an interface to networking code, which is required for a
client/server application.

The main game engine should compile on any platform with a C++ compiler
and STL. The drivers described above are the only components which must be
reimplemented to support a new platform.

This portability comes at a price though. Each call to code within one of the
drivers is wrapped, typically with a virtual function call, and is thus a bit more
expensive than a similar call in a platform specific application. In a properly
optimized game engine there will be relatively few calls to the drivers per frame,
but if for example the graphics driver is used in a suboptimal way (lots of render
calls for example) the abstraction layer causes a performance drop.

The rendering framework
The Peroxide Engine uses an effect framework for rendering. Before rendering
can take place an effect must be obtained from the graphics driver. If the de-
sired effect exists in a version compatible with the detected hardware the graphics
driver returns a pointer to the effect. The effect provides begin and end methods
along with a mechanism for setting parameters that varies with the objects being
rendered. Any geometry rendered between the ’begin’ and ’end’ calls is drawn
as specified by the effect. If multiple passes over the geometry are required for a
certain implementation of an effect, the effect interface will specify exactly how
many passes are required and, if different versions of the geometry are involved,
the effect will specify the order in which the application should draw them.
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One benefit of this system is that multiple render paths can be implemented
for various generations of graphics cards, each using the latest features on the
hardware for the fastest and best looking implementation of the desired effect. For
example in our engine we have three different implementations of a water effect,
ranging from a simple texture mapping to a complex pixel shader implementation
that only runs on cards with ps2.0 or better. As better hardware becomes available
it is easy to implement a new version of the effect without making any changes
in the actual game engine. In addition, if a certain effect does not exist for the
detected hardware the game engine will know this and will skip the rendering of
the geometry that needs the effect.

Dynamic worlds
The Peroxide Engine is built with large, fully dynamic, indoor and outdoor envi-
ronments in mind. As a result, no assumptions are made about the relationships
between the entities that make up the world. Every object or light can freely be
moved around, without any significant performance decrease. This entails that all
shadows are dynamic. For outdoor scenes, a fully dynamic landscape component
has been implemented that allows for real-time modifications to shape, texture
and color among other things. This allows for game-play effects such as craters
that appear if a bomb is dropped, or permanent scorch marks caused by fires. A
dynamic day-cycle has been implemented where a number of key-frames spec-
ify properties such as the ambient light, the sun’s position, color and strength as
well as various fog settings for specific times of the day. This dynamic world is
efficiently managed through a scene tree structure, as described in chapter 5.

Script languages
Two custom scripting languages have been developed for the Peroxide Engine.
The first is called PxdScript and is a programming language with a C-like syntax.
Through PxdScript it is possible to manipulate the game engine and the entities in
a scene. PxdScript is typically used to implement game-play events, AI scripts for
the NPCs1, and services. Services are scripts that run continuously in the scene
for example to rotate the cogs of a machine or the wings of a windmill. A virtual
machine executes PxdScript programs and allow pseudo-parallel execution and
saving and loading of running programs. The second language in the engine is
used for scripting dialogs with the NPCs in the world through a very high-level
syntax.

1Non Player Characters: characters controlled by the engine as opposed to the character con-
trolled by the player.
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Additional features
In addition to the features mentioned above, the Peroxide Engine includes a few
components that we will only mention very briefly, as they have limited or no
relevance to the topics covered in this thesis. Still, they are mentioned here as
they indirectly affect the measured performance of the soft shadow algorithm by
imposing a constant CPU overhead each frame that would not be present in a test
application.

We have implemented a GUI framework, using accelerated 3d graphics, in
which it is possible to set up and to render windows with different ’skins’ or
’looks’. We use this GUI toolkit for some of our in-game windows as well as
for some of our editing tools. We have also implemented a flexible and highly
parameterized particle system as well as a system for cloth animation. The Per-
oxide Engine also includes an animation system that allows for skeletal animation
with up to four weights per bone, and a system for mixing animations allowing
for smooth blends from one animation to another. All 3d models and animations
are exported from 3d studio max to our custom file formats using our own export
plug-ins.

The editing of our worlds is conducted in real-time using editing features built
into the game engine. The editing can be performed either offline on maps that
reside locally on the client machine or online through an editing server called
NetEd. By connecting to NetEd it is possible for multiple users to edit the same
map simultaneously. This is useful since our game maps, typically, are too big and
complex for a single world builder to handle by himself. When the client connects
to the NetEd server the current state of the map is saved to a buffer and sent to the
connecting client. After this point any changes a client might make to the map is
propagated to all connected clients to keep them synchronized.

6.2 Calculating screen-space coordinates in a
shader

Certain graphical multi-pass algorithms first render some sort of information to a
screen sized texture and then, in a later pass, they sample the texture to retrieve the
information stored in the pixel corresponding to the one currently being shaded
in the render-target. A good example of this is the soft shadow algorithm which
uses this technique twice: the wedge pixel shader retrieves depth information from
the extra z-buffer, and the light pixel shader retrieves the light intensity from the
LI-buffer.

To read from a texture, texture coordinates have to be available. So, reading
from a screen sized texture presents us with the problem of finding texture coor-
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dinates that will lookup the texel corresponding to the pixel that is about to be
shaded2.

In order to calculate these texture coordinates, it is necessary to look at the
viewport transformation which transforms a vertex from projected-space onto the
screen. This is an additional step in the transformation process shown in fig-
ure A.4. The viewport transformation converts the coordinates from the range
[−1..1] in projected-space to actual pixel coordinates in the image, f.ex. to the
range [0..1023] × [0..767]. As it is possible to map projected-space to any rectan-
gular area of the screen, the image resolution does not necessarily have to match
the screen resolution.

When the viewport is equal to the full screen size, and has full depth range,
the viewport transformation matrix V is given as (see [Mic] Viewport Scaling):
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where W and H are the width and height of the screen in pixels.
Let p be a point in projected-space (pxyz ∈ [−1..1]). The final screen-space po-

sition p′ (in pixels) is calculated by applying the viewport transformation matrix to
the homogeneous projected-space coordinates. The result is finally homogenized
into Cartesian coordinates by dividing with p′
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For a transformation matrix V as given in equation 6.1, and from the definition
of p′ in 6.2, we find that:
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To sample a texture, the supplied texture coordinates are transformed into texel
coordinates t as follows (see [Mic] Directly Mapping Texels to Pixels):

txy = cxysxy + 0.5 (6.4)

2OpenGL fragment programs have these coordinates accessible as a built-in variable but this is
not the case for DirectX pixel shaders.
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where c is the texture coordinates and s is the texture size. Since we want to
sample a screen sized texture we have that sx = W and sy = H . To sample the
correct texel in the screen sized texture we need to calculate texture coordinates
cxy so that p′xy = txy:

p′xy = txy

= cxysxy + 0.5

m
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Unfortunately, we have to evaluate equation 6.5 in the pixel shader for each
pixel, rather than in the vertex shader for each vertex. It is not possible to calculate
the equation in the vertex shader because linearly interpolating a and b and then
calculating a/b is not the same as interpolating a/b. However it is possible to
calculate the expressions px

2
and −py

2
in the vertex shader and interpolate these

values. Furthermore, the expressions 0.5 − 1

2W
and 0.5 − 1

2H
are both constant

and can thus be uploaded to a constant register in the pixel shader. All the pixel
shader must do is to divide the interpolated px

2
and −py

2
by the interpolated pw,

and then add the constant uv displacement. This is trivially vectorizable and can
be implemented in two assembler instructions (one reciprocal and one multiply-
and-add instruction, see [Mic] Instructions - ps_2_0).

The CG code that implements the above is shown here:

1 // Vertex shader
2 struct appin {
3 float4 position : POSITION;
4 };
5

6 struct wedgeOut {
7 float4 position: POSITION;
8 float4 posData: TEXCOORD0;
9 };
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10

11 wedgeOut main(appin IN,
12 uniform float4x4 worldViewProj : register(c0))
13 {
14 wedgeOut OUT;
15 OUT.position = mul(IN.position, worldViewProj);
16

17 // The line below implements the per-vertex part of the lookup technique:
18 OUT.posData = OUT.position;
19 OUT.posData.y = -OUT.posScreenSpace.y;
20 OUT.posData.xy *= 0.5; return OUT;
21 }

1 // Pixel shader
2 struct appIn {
3 float4 position: POSITION;
4 float4 posData: TEXCOORD0;
5 };
6

7 float4 main(appIn IN, uniform float2 uvOffset : register(c0))
8 {
9 // Calculate screenspace UV coords

10 float4 temp = IN.posData;
11 float2 screenSpaceUV = (temp.xy/temp.w) + uvOffset;
12

13 // sample the screen-sized texture:
14 ....
15 }

6.3 The soft shadow algorithm
In this section we show the application code issuing the rendering calls and the
vertex and pixel shaders used in the soft shadow algorithm. The algorithm is
described in chapter 4, and an overview of it is given in section 4.1.6, so we
will not repeat the description here, but we will clarify some of the more obscure
details in the implementation.

Application code

1 // the hard shadow part:
2 Effect* hardShadowEffect = gfxdriver->getEffect("hardWedge");
3 if (hardShadowEffect) {
4 // for all passes (=2):
5 for (int i = 0; i < hardShadowEffect->getNumPasses(); i++) {
6 hardShadowEffect->begin(i);
7

8 for (int j = 0; j < shadowVolumes.size(); j++) {
9 shadowVolumesj->renderHardShadow();

10 }
11 }
12

13

14 hardShadowEffect->end();
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15 }
16

17 // the wedges:
18 wedgeEffect = gfxdriver->getEffect("wedge");
19 if (wedgeEffect) {
20 // parameters for wedge
21 VECTOR viewSpaceLightPos = gfxdriver->getViewMatrix() * light->GetPosition();
22 float lightRadius = light->getRadius();
23

24 gfxdriver->clear(COLOR(), CLEAR_STENCIL_ONLY);
25

26 // Draw all volumes:
27 for (int i = 0; i < shadowVolumes.size(); i++) {
28

29 // render each wedge:
30 for (int j = 0; j < shadowVolumesi->getNumWedges(); j++) {
31

32 // Inner wedge half
33 wedgeEffect->begin(0);
34 shadowVolumesi->renderInnerWedgeNr(j);
35 wedgeEffect->begin(1);
36 wedgeEffect->setParameter(EP_LIGHT_POSITION, viewSpaceLightPos/lightRadius);
37

38 wedgeEffect->setParameter(EP_LIGHT_RADIUS, VECTOR4D(lightRadius,0,0,0));
39 shadowVolumesi->renderInnerWedgeNr(j);
40

41 // Outer wedge half
42 wedgeEffect->begin(2);
43 shadowVolumesi->renderOuterWedgeNr(j);
44 wedgeEffect->begin(3);
45 wedgeEffect->setParameter(EP_LIGHT_POSITION, viewSpaceLightPos/lightRadius);
46 wedgeEffect->setParameter(EP_LIGHT_RADIUS, VECTOR4D(lightRadius,0,0,0));
47 shadowVolumesi->renderOuterWedgeNr(j);
48 }
49

50 }
51 wedgeEffect->end();
52 }

The application code uses the effect framework described in section 6.1, which
is why the state settings are not visible in the code below. The shadow volumes
are represented by C++ objects with a number of convenience methods. F.ex. it
is possible to get the number of wedges and to render the inner and outer half of
each wedge separately.

The application code renders two things: the hard shadow and the wedges.
The wedge rendering, (lines 33–47), shows that four render calls are used per
wedge, two for each wedge half. The two render calls for each half accomplish
the culling of fragments that are not in the penumbra area, as it is described in
section 4.1.3.

Wedge vertex shader

1 struct appin {
2 float4 position : POSITION;
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3 float4 edgePoint0 : TEXCOORD0;
4 float4 edgePoint1 : TEXCOORD1;
5 };
6

7 struct wedgeOut {
8 float4 position: POSITION;
9 float4 posData: TEXCOORD0;

10 float3 posViewSpace : TEXCOORD1;
11 float3 edgePoint0 : TEXCOORD2;
12 float3 edgePoint1 : TEXCOORD3;
13 float r3DepthViewSpace : TEXCOORD4;
14 };
15

16 wedgeOut main(appin IN, uniform float4x4 worldViewProj : register(c0),
17 uniform float4x4 worldView : register(c4),
18 uniform float rcpLightRadius : register(c10)) {
19

20 wedgeOut OUT;
21 OUT.position = mul(IN.position, worldViewProj);
22

23 // Calculate screenspace position
24 OUT.posData = OUT.position;
25 OUT.posData.y = -OUT.posData.y;
26 OUT.posData.xy *= 0.5;
27

28 OUT.posViewSpace = mul(IN.position, worldView).xyz;
29 OUT.r3DepthViewSpace = OUT.posViewSpace.z;
30 OUT.posViewSpace.xyz *= rcpLightRadius;
31

32 OUT.edgePoint0 = mul(IN.edgePoint0, worldView).xyz * rcpLightRadius;
33 OUT.edgePoint1 = mul(IN.edgePoint1, worldView).xyz * rcpLightRadius;
34

35 return OUT;
36 }

The vertex and pixel shaders use the technique described in section 6.2 to
calculate the screen-space coordinates, which is seen in vertex shader lines 24–26
and pixel shader line 19. The edge points are passed to the pixel shader via the
vertex data (in texture coordinates 0 and 1, line 3 and 4). Since the vertices are
not shared between wedges, these data are constant for all triangles involved in a
wedge, which is why there is no risk that interpolation will change these values.

The rcpLightRadius variable is the reciprocal value of the radius of the
current light, and is used to transform the view-space position and the edge point
0 and 1, (see lines 30–33), into unit sphere space as described in section 4.2.1.
We use the reciprocal value because it allows us to use multiplication instead of
division, saving an assembly instruction.

Wedge pixel shader

1 struct appIn {
2 float4 position: POSITION;
3 float4 posData: TEXCOORD0;
4 float3 posViewSpace : TEXCOORD1;
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5 float3 edgePoint0 : TEXCOORD2;
6 float3 edgePoint1 : TEXCOORD3;
7 float r3DepthViewSpace : TEXCOORD4;
8 };
9

10 float4 main(appIn IN, uniform sampler2D depthMap : register(s0),
11 uniform sampler3D visMapSameSide : register(s1),
12 uniform sampler3D visMapDiffSide : register(s2),
13 uniform float3 lightPos : register(c0),
14 uniform float2 uvOffset : register(c3),
15 uniform float rcpLightRadius : register(c4),
16 uniform float4 resultModulator: register(c5)) : COLOR {
17

18 // Calculate screenspace UV coords
19 float2 screenSpaceUV = (IN.posData.xy/IN.posData.w) + uvOffset;
20

21 // Sample depth value
22 float depthValue = tex2D(depthMap, screenSpaceUV).r;
23

24 // Find position in view-space of geometry behind this wedge pixel
25 float3 geometryPos = IN.posViewSpace * (depthValue / IN.r3DepthViewSpace);
26

27 // Find plane through edge and geometryPos
28 float3 geoPlaneNormal = normalize(cross(IN.edgePoint0 - geometryPos, IN.edgePoint1 - geometryPos));
29

30 // distance from plane to lightPos (if within range -1,1 it intersects the light):
31 float d0 = dot(lightPos - IN.edgePoint0, geoPlaneNormal);
32

33 // Project lightPos to geoPlane:
34 float3 basePoint = lightPos - d0 * geoPlaneNormal;
35

36 // Find normal of lightPlane
37 float3 lightPlaneNormal = normalize(geometryPos - basePoint);
38

39 // Project e0 and e1 onto lightPlane
40 float distToPlane = dot(IN.edgePoint0 - basePoint, lightPlaneNormal);
41 float3 edgePoint0Proj = IN.edgePoint0 - distToPlane * lightPlaneNormal;
42

43 distToPlane = dot(IN.edgePoint1 - basePoint, lightPlaneNormal);
44 float3 edgePoint1Proj = IN.edgePoint1 - distToPlane * lightPlaneNormal;
45

46 // Determine if the projected points are on the same side of base point or not.
47 float3 baseToE0p = edgePoint0Proj - basePoint;
48 float3 baseToE1p = edgePoint1Proj - basePoint;
49

50 // Calculate distance from base point to the two projected points.
51 float d1 = length(baseToE0p);
52 float d2 = length(baseToE1p);
53

54 // The look-up texture coordinate:
55 float3 uvw = float3(abs(d0), d1, d2);
56

57 // Sample the correct map
58 float coverage;
59 if (dot(baseToE0p, baseToE1p) > 0) {
60 coverage = tex3D(visMapSameSide, uvw).r;
61 }
62 else {
63 coverage = tex3D(visMapDiffSide, uvw).r;
64 }
65

66 // Calculate the changes to make according to coverage.
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67 float4 result = float4(0,coverage,0,coverage) * resultModulator;
68

69 return result;
70 }

Conceptually the pixel shader can be divided into three parts: finding the ge-
ometry (or fragment) position (until line 25), calculating the coverage value based
on the geometry position (until line 65), and using the coverage value to give the
desired output. The geometry position is found by using the pixel position and
reading the depth value from the depth buffer as described in section 4.1.4.

Calculating the coverage value is the most expensive part. A high-level de-
scription of the computation is found in section 4.1.4, and here we will de-
scribe it in further detail. First, we find the geoPlane, or rather the normal to
it (geoPlaneNormal at line 28). With this, we can find d0: the signed distance
from geoPlane to the light source. We can then use d0 to find the basePoint by pro-
jecting the light source onto the geoPlane (line 34). The normal to the lightPlane
can now be found as the normalized vector from the basePoint to the geometry po-
sition (line 37). We then project the edge points onto the lightPlane and form the
two vectors from the base point to each of the projected edge points (baseToE0p
and baseToE1p). These two vectors are used for finding d1 and d2 as well as for
calculating whether the projected points are on the same or different sides of the
basePoint. The projected edge points are on the same side if the dot product be-
tween the two vectors are greater than zero (line 59). Knowing this, and knowing
the values of d0, d1 and d2 we can sample the correct function map to lookup the
coverage value.

Using the coverage value to give the desired output is very simple. We want the
coverage value outputted to either the y or the w channel, depending on whether
the fragment is in the inner or outer penumbra region. Since this version of the soft
shadow algorithm uses the split wedge geometry we know where the fragments
are located without having to make any calculations. Consequently we could
have made two slightly different versions of the pixel shader; one that outputs
the coverage value to the y and one that outputs to the w channel. Instead we
use a little trick. The resultModulator variable contains either (0, 1, 0, 0) or
(0, 0, 0, 1) and line 67 therefore masks out the correct output channel. This trick
costs an extra pixel shader instruction but allows us to use the same shader for both
halves, thus saving the overhead of switching shaders and allowing us to maintain
one pixel shader instead of two.

6.4 The per-loop soft shadow algorithm
This section shows some of the code for our implementation of the per-loop soft
shadow algorithm described in section 4.4. Some of the code is identical to the
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code of the original algorithm and we will only discuss the code that is different
here. As the vertex shader in this version is identical to the original it is not shown.

Per-loop application code

1 Effect* wedgeEffect = gfxdriver->getEffect("wedge");
2

3 if (wedgeEffect) {
4 gfxdriver->setRenderTarget("coverageTexture");
5 gfxdriver->clear(COLOR(0,0,0,0), CLEAR_COLOR_ONLY);
6

7 // For every shadow volume...
8 for (int j = 0; j < shadowVolumes.size(); j++) {
9 ShadowVolume* volume = shadowVolumesj;

10

11 // for every silhouette loop...
12 for (int loopNum = 0; loopNum < volume->getNumLoops(); loopNum++) {
13

14 // Clear softDataTexture
15 gfxdriver->setRenderTarget("softDataTexture");
16 gfxdriver->clear(COLOR(0,0,0,0), CLEAR_COLOR_ONLY);
17

18 // Hardshadow
19 wedgeEffect->begin(0);
20 volume->renderHardLoopNr(loopNum);
21 wedgeEffect->begin(1);
22 volume->renderHardLoopNr(loopNum);
23

24 VECTOR viewSpaceLightPos = gfxdriver->getViewMatrix() * light->GetPosition();
25 float lightRadius = light->getRadius();
26

27 // Stencil out the penumbra area
28 wedgeEffect->begin(2);
29 volume->renderWedgeLoopNr(loopNum);
30

31 // Run PS in the stenciled out area calculating loop-local coverage into softDataTexture
32 wedgeEffect->begin(3);
33 wedgeEffect->setParameter(EP_LIGHT_POSITION, viewSpaceLightPos/lightRadius);
34 wedgeEffect->setParameter(EP_LIGHT_RADIUS, VECTOR4D(lightRadius,0,0,0));
35 volume->renderWedgeLoopNr(loopNum);
36

37 // Transfer the calculated value to coverageTexture
38 wedgeEffect->begin(4);
39

40 wedgeEffect->end();
41 }
42 }
43 }

The application code is a lot different from the original algorithm since
we render per silhouette loop; the for-loop in line 12 accomplishes this. The
shadow volume objects used here are also different from the ones in the orig-
inal algorithm as they must support per-loop operations instead of per-wedge
operations. Also note that the coverage transfer step is accomplished in the
wedgeEffect->begin(5) call in line 38 which makes the appropriate render
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call (a screen-sized quad).

Per-loop wedge pixel shader

1 / Pixel shader for wedges
2 struct appIn {
3 float4 position: POSITION;
4 float4 posData: TEXCOORD0;
5 float3 posViewSpace : TEXCOORD1;
6 float3 edgePoint0 : TEXCOORD2;
7 float3 edgePoint1 : TEXCOORD3;
8 float r3DepthViewSpace : TEXCOORD4;
9 };

10

11 float4 main(appIn IN, uniform sampler2D depthMap : register(s0),
12 uniform sampler3D visMapSameSide : register(s1),
13 uniform sampler3D visMapDiffSide : register(s2),
14 uniform float3 lightPos : register(c0),
15 uniform float2 uvOffset : register(c1)) : COLOR {
16

17 // Calculate uv coords for screen position
18 float2 screenSpaceUV = (IN.posData.xy/IN.posData.w) + uvOffset;
19

20 float coverage = 0;
21

22 // Sample depth value
23 float depthValue = tex2D(depthMap, screenSpaceUV).r;
24

25 // Find position in view-space of geometry behind this wedge pixel
26 float3 geometryPos = IN.posViewSpace * (depthValue / IN.r3DepthViewSpace);
27

28 // Find plane through edge and geometryPos
29 float3 geoPlaneNormal = normalize(cross(IN.edgePoint0 - geometryPos, IN.edgePoint1 - geometryPos));
30

31 // Does plane intersect with light sphere?
32 // distance from plane to lightPos:
33 float distLightToGeoPlane = dot(lightPos - IN.edgePoint0, geoPlaneNormal);
34

35 // Project lightPos to geoPlane:
36 float3 basePoint = lightPos - distLightToGeoPlane * geoPlaneNormal;
37

38 // Find normal of lightPlane
39 float3 lightPlaneNormal = normalize(geometryPos - basePoint);
40

41 // Project e0 and e1 onto lightPlane
42 float distToPlane = dot(IN.edgePoint0 - basePoint, lightPlaneNormal);
43 float3 edgePoint0Proj = IN.edgePoint0 - distToPlane * lightPlaneNormal;
44 distToPlane = dot(IN.edgePoint1 - basePoint, lightPlaneNormal);
45 float3 edgePoint1Proj = IN.edgePoint1 - distToPlane * lightPlaneNormal;
46

47 float3 baseToE0 = edgePoint0Proj - basePoint;
48 float3 baseToE1 = edgePoint1Proj - basePoint;
49

50 float dotProd = dot(baseToE0, baseToE1);
51 float distToE0 = length(baseToE0);
52 float distToE1 = length(baseToE1);
53

54 float3 uvw = float3(abs(distLightToGeoPlane), distToE0, distToE1);
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55 if (dotProd > 0) {
56 coverage = tex3D(visMapSameSide, uvw).r;
57 }
58 else {
59 coverage = tex3D(visMapDiffSide, uvw).r;
60 }
61

62

63 // Use coverage value calculated
64 float4 result;
65

66 // Let distLightToGeoPlane decide whether we are in inner or outer region
67 if (distLightToGeoPlane > 0) {
68 // Outer region - add coverage and tell that we are outside
69 result = float4(0,1,coverage,0);
70 }
71 else {
72 // Inner region - subtract coverage
73 result = float4(0,0,0,coverage);
74 }
75

76 return result;
77 }

The pixel shader is almost identical to the original algorithm, the only differ-
ence is how the calculated coverage value is used, (see line 67). If the fragment is
in the outer penumbra region, we add the coverage value to the z channel and add
one to the y channel. The y channel is later tested by the coverage transfer shader
to determine whether we are inside or outside hard shadow. The method for doing
this is described in section 4.4. If the fragment is in the inner region, we add the
coverage value to the w channel.

The coverageTransfer pixel shader

1 struct appin {
2 float4 position : POSITION;
3 float2 texCoords : TEXCOORD0;
4 };
5

6 float4 main(appin IN, uniform sampler2D softDataMap : register(s0)) : COLOR
7 {
8 float4 softDataValues = tex2D(softDataMap, IN.texCoords);
9

10 float coverage = softDataValues.z - softDataValues.w;
11

12 if (coverage == 0)
13 coverage = softDataValues.x;
14 else if (softDataValues.y == 0) {
15 // Inside hardshadow
16 coverage += 1;
17 }
18

19 coverage = saturate(coverage);
20
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21 return float4(coverage, 0, 0, 0);
22 }

The coverageTransfer pixel shader calculates the LI value for a single silhou-
ette loop. The LI value is the difference between the positive and negative cover-
age contributions (the z and w channels respectively, see line 10). If the LI value
is zero, we assume that we are outside the penumbra area and we use the umbra
(or hard shadow) value which is found in the x channel (line 13). If the LI value
is different from zero we are inside the penumbra area and the y channel tells us
whether or not we are in hard shadow as described above. When in hard shadow,
we add one to the LI value (line 16).

6.5 Vertex shader shadow volumes
Here we show the vertex shader code which extrudes the VS shadow volumes as
described in section 3.3.3.

1 struct appin {
2 float4 position : POSITION;
3 float4 normal : NORMAL;
4 };
5

6 struct vertout {
7 float4 position : POSITION;
8 };
9

10 vertout main(appin IN,
11 uniform float4x4 worldView : register(c4),
12 uniform float4x4 proj : register(c8),
13

14 uniform float4 viewSpaceLightPos : register(c12),
15 uniform float lightRange : register(c13))
16 {
17 // Calculate view-space position and normal
18 float4 viewSpacePos = mul(IN.position, worldView);
19 float3 viewSpaceNormal = mul(IN.normal.xyz, (float3x3)worldView);
20

21 // Calculate extrusion vector
22 float4 extrusion = viewSpacePos - viewSpaceLightPos;
23 extrusion.w = 0;
24 float distToPoint = length(extrusion);
25 extrusion = normalize(extrusion) * max(0, lightRange-distToPoint);
26

27 // Calculate final position:
28 float dotProd = dot(viewSpaceNormal, extrusion.xyz);
29 float4 finalViewSpacePos = (dotProd<0) ? viewSpacePos : viewSpacePos + extrusion;
30

31 // Project final view-space pos
32 vertout OUT;
33 OUT.position = mul(finalViewSpacePos, proj);
34 return OUT;
35 }
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Lines 22–25 calculate the extrusion vector for the vertex. Line 29 chooses
between letting the vertex stay at its normal position or extruding it based on
whether it is front or back facing to the light. Note that the extrusion is performed
in view-space and the projection matrix is applied afterwards.

89



Chapter 7

Conclusion

In this thesis we have investigated the theoretical and practical aspects of both
hard and soft real-time shadows, and we have implemented them in a full-fledged
modern game engine. In this chapter, we present a compact summary of our key
results and suggest future work that would speed up the presented soft shadow
algorithms as well as expand the class of volume light sources that can be used.

7.1 Results
We have implemented the soft shadow algorithm suggested by Akenine-Möller
and Assarsson in [AMA02], [AAM03] and [ADMAM03] and described in chapter
4. The algorithm calculates penumbra wedges for each silhouette edge from a
given light source. The penumbra wedges are rasterized into the LI buffer using a
pixel shader. The LI buffer holds a visibility factor for each pixel on the screen,
and this factor is used in a subsequent pass to modulate the contribution from the
light. The penumbra wedge algorithm implements a general solution for real-time
soft shadows in simple scenes with arbitrary shadow casters.

Assuming spherical light sources we have developed a novel technique for cal-
culating the coverage value as described in section 4.2. The coverage calculation
is the most time consuming part of the pixel shader, but with our optimization the
length of the pixel shader is reduced from 63 to 43 instructions. Furthermore, the
amount of texture memory required for look-up tables is reduced from 2MB to
128KB.

We have identified several problems in the algorithm, the most important being
that each wedge must be rendered seperately. This is a consequence of the need
to split each wedge in halves as described in section 4.3.3. The large amount
of render calls results in a severe CPU overhead that becomes the bottleneck in
the algorithm for complex scenes. To overcome the CPU bottleneck, we have
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developed a novel version of the algorithm that is able to render all wedges in a
silhouette loop as a single batch. The per-loop algorithm is described in section
4.4. As described in section 4.5, this version of the algorithm is GPU limited rather
than CPU limited and as GPUs currently evolve faster than CPUs, we believe this
is an interesting trait. In its current form the per-loop algorithm unfortunately only
allows shadow casters that produce convex silhouette loops.

We have implemented both the original and our per-loop algorithm in our
game engine, and we have tested the techniques on real game scenes as demon-
strated in screenshots B.1 to B.5. The images render at interactive, but not real-
time, frame rates1. To efficiently manage the large amount of shadow volumes in
the game scenes we have developed several culling techniques which ensure that
only visible volumes are processed, as it is described in chapter 5.

7.2 Future work
From our work with the soft shadow algorithm we conclude that it is not ready
for general use in its current form. Further research is necessary before it can be
applied to games the way stencil shadows are today.

Performance
The most important contribution to the algorithm would be to increase its per-
formance. In section 4.3 we identified a list of problems with the soft shadow
algorithms, some of which had to do with the limited blending functionality of
current hardware. It is possible that new generations of graphics hardware will
allow custom blending operations from within pixel shaders and if so, work can
be done to optimize the calculations performed on the GPU. But since the original
algorithm is CPU limited this will not solve the performance problems.

Before our per-loop algorithm can be put to general use it must be able to
handle arbitrary shadow casters. At this time we have no ideas for a solution to
this problem.

We have not tried to optimize our per-loop algorithm, but there are several
ways to reduce the number of the coverage transfer passes and clear operations.
One such way is to split up the channel used for hard shadow data. This should
make it possible to render two loops for every coverage transfer pass, and it would
effectively halve the number of clear operations as well as the number of execu-
tions of the coverage transfer pixel shader. Furthermore, the coverage transfer pass
always renders a screen-sized quad, even if the affected area is just a small frac-
tion of the screen. This is wasteful, both in regard to the pixel shader executions

1Between 1.5 and 5 FPS in a 640× 480 resolution.
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and the bandwidth usage.

Ellipsoidal light sources
Another valuable contribution to the algorithm would be to extend our new cover-
age calculation technique to other light shapes than spheres. Akenine-Möller and
Assarsson have implemented three variants of the original algorithm which allows
them to cast shadows from both spherical, rectangular and even textured rectangu-
lar light sources[AAM03]. Our optimized coverage calculation technique is only
valid for spherical light sources which should not be a problem in most game set-
tings. However it is possible, to extend our algorithm to handle ellipsoidal light
sources. In section 4.2.1 we describe how to transform geometry into a space
where the light source is a unit sphere through the use of a change of basis matrix.
For spherical light sources we show how this can be reduced to a simple division
by a scalar. For axis-aligned ellipsoids a similar reduction into a division by a
vector is possible but for generally oriented ellipsoids the entire CBM must be ap-
plied. The cost of applying a full matrix to a point is four pixel shader instructions
whereas division by a scalar or a vector is possible in one.

Ellipsoids provide a good approximation to many shapes, and we would with
this addition be able to handle soft shadows from for example strip lights. Strip
lights are common in many environments and are quite poorly approximated by
spheres.
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Appendix A

Working with 3d graphics

A.1 Terminology
In this section we briefly introduce some of the most common concepts and terms
used in 3d computer graphics. An understanding of these concepts is crucial for
reading this thesis.

Color buffer
At the most basic level, images in computer graphics consist of an array of colors
- one color for each pixel in the image. Each color is typically represented using
three color channels, R, G and B, describing the intensity of each of the main
color components: red, green and blue. Optionally, the color can also contain an
alpha channel that can be used for auxiliary information such as the transparency
value of the pixel. 8 bits are typically used for each channel, making a color 32
bits in size: an optimal size for a CPU as it matches the cache boundaries nicely
and makes it possible to store an entire color value into memory with a single
assembly instruction. As a result, 32 bits are usually used - even when an alpha
channel is not needed. In such a case, each color simply contains a padding byte
where the alpha information would normally be stored. The array of colors is
usually referred to as the color buffer.

Depth buffer
For 2d graphics a color buffer is really all we need, but in 3d it is possible for
several surfaces to be projected and rendered into the same pixels in the color
buffer. Then it is necessary to keep track of the spatial order of all such pixels
so only the front most pixel is shown1. As it is impractical to keep track of the

1This is known as the hidden surface removal problem
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spatial order of all pixels in real-time rendering a depth buffer or z-buffer is used
to keep track of the current depth of all pixels in the color buffer. So a depth buffer
is simply a buffer (with the same width and height as the color buffer) that stores
the depth value of each pixel currently in the color buffer. Whenever a new pixel
is about to be rendered into the color buffer, its depth value is first compared with
the z-buffer - this is often referred to as the z-test. Only if the new pixel has a
depth value closer to the viewer2 than the current one is it allowed to update the
color and depth buffer. Since a fairly high precision is needed to sort the pixels
correctly, 24 or 32 bits are typically used for each pixel in the depth buffer.

Stencil buffer
Current graphics cards are also equipped with a so-called stencil buffer. A sten-
cil buffer can be thought of as a kind of mask that can be set up to define which
regions of the color buffer that can be rendered to. If f.ex. the stencil buffer is
cleared to zero and a circle is drawn in the middle of it, setting the stencil value
to one for all pixels that the circle covers, then the stencil buffer can later be con-
figured only to allow draws in the color buffer in those regions where the stencil
value is one. In effect, we have masked out a circular region of the color buffer.
Typically 8 bits are used per pixel in the stencil buffer, and for performance rea-
sons it is usually coupled with a 24 bit depth buffer, resulting in a 32 bit combined
depth-stencil buffer.

As the stencil buffer is a very important tool for our shadow rendering, we
will cover its use a bit more in depth in the following. There are quite a few pa-
rameters involved in setting up the stencil buffer and two of them are the stencil
reference value and the stencil compare function. The stencil reference value is
a constant 8-bit value that is uploaded to the graphics card, and for each pixel
the corresponding value in the stencil buffer is compared with it using the speci-
fied compare function. The result of this comparison is a Boolean value. If this
Boolean is true then we say that the pixel passes the stencil test - otherwise it fails
the stencil test. As explained above it is only if the pixel passes the stencil test
that it is allowed to be drawn into the color buffer. So, given that we have already
placed some values into the stencil buffer somehow, those two parameters are all
that is needed to use the stencil buffer for masking out certain areas in the frame
buffer. In the circle example above we would set the stencil reference value to ’1’
and the compare function to ’equal’.

It is not possible to render values directly into the stencil buffer though. Its
values are modified with certain stencil operations that happen when any of three
different conditions are met. These three conditions are: when the stencil test

2Actually it is possible for the application programmer to define the z-test to be something else
than the usual ’less-or-equal’ but this was the original idea behind the z-buffer.

94



passes; when the stencil test fails; and when the stencil test passes but the z-test
fails. For each of the three cases: PASS, FAIL and ZFAIL a stencil operation must
be specified. The exact list of available stencil operations depends on the graphics
card but the basic ones available on all cards are:

• KEEP - leave the stencil value untouched.

• ZERO - set the stencil value to 0.

• ONE - set the stencil value to 1.

• INCR - increase the stencil value by 1.

• DECR - decrease the stencil value by 1.

• REPLACE - replace the stencil value with the stencil reference value.

So, to set the values of the stencil buffer the graphics card is typically con-
figured not to draw in the color buffer. Then pieces of geometry are rendered as
normal, with the stencil buffer turned on and the stencil compare function set to
’always’. As a result, all rendered pixels will pass the stencil test just as long as
they pass the z-test.

Homogeneous coordinates
The basic geometrical transformations used in 3d graphics are rotation, scaling
and translation. Both scaling and rotation in 3d can be expressed through a 3x3
matrix, and in order to scale or rotate a 3d vector it is simply multiplied with
the corresponding matrix. Translation, on the other hand, is achieved by adding
the translation vector to the source vector. This inconsistency in how to apply
transformations is unfortunate - we would like to be able to treat all three kinds
of transformations in a consistent way, namely through a vector/matrix multipli-
cation. To overcome this problem most graphics APIs, including both DirectX
and OpenGL, work with so-called homogeneous coordinates. In homogeneous
coordinates an extra ’w’ component is added to the vector. In 3d this means ex-
panding each vector from three to four vector components: x, y, z and w. Thus the
transformation matrices must also be expanded from 3x3 to 4x4 if they are still
to be multiplied to the vectors. As explained in [FvDFH90] chapter 5, using ho-
mogeneous coordinates and 4x4 transformation matrices we are now able to also
implement translations as matrix multiplications. The main benefit of this is that
we now can concatenate a whole string of transformations into a single 4x4 matrix
and apply all the translations to a vector simply by multiplying it with this single
combined transformation matrix. This is very useful in a 3d graphics pipeline.
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If we homogenize a point given in homogeneous coordinates by dividing each
component with the w component, we get a vector of the form (x, y, z, 1) and we
call the point (x, y, z) for the Cartesian coordinates of the homogeneous point.
The fact that we’re using homogeneous coordinates, can be fairly transparent to
the user of a 3d API such as OpenGL or DirectX since we can just define our
3d vectors as usual and have the API assume a default w value of 1. On the other
hand, if we explicitly specify a w value different from 1, or a vector is transformed
by the graphics pipeline described below so that it gets a w value different from
1, then the API will homogenize the coordinate before rasterising the triangle in
which it is used. As one cannot divide by zero, homogeneous points with a w
value of zero cannot be homogenized. However, as the value diverges towards
infinity we define all such points to be infinitely far away, displaced along a ray
originating at (0, 0, 0) and with direction vector (x, y, z). As a result it is common
to represent direction vectors as homogeneous coordinates with w=0 while point
vectors uses the standard representation with w=1.

Fragments vs. pixels
There is a subtle but important difference between fragments and pixels. A frag-
ment is the projection of a small part of a specific triangle to a certain coordinate
on the screen while a pixel is the smallest unit in the image. The final color of
each pixel is a combination of the colors of all fragments that are projected onto
the pixel. Sometimes the projection of a fragment onto a pixel simply overwrites
its current color but it is also possible to have the graphics card blend the new frag-
ment’s color with the current color of the pixel instead. This technique is called
frame buffer blending, and various settings on the graphics card exist that allow
the application programmer to specify how this blending should be done. Exam-
ples of different blend modes are additive blending and various forms of alpha
blending. In additive blending the color of each new fragment is simply added
to the current color of the pixel, while in alpha based blending modes the alpha
channel of the new fragment is used to decide the weighting of a blend between
the new and current color of the pixel.

A.2 The graphics pipeline
Current 3d cards and 3d APIs such as DirectX and OpenGL represent the geome-
try they render as meshes of triangles. A triangle mesh is built from a collection
of vertices (points) in 3d and is defined by edges that connect those vertices into
triangles. In this section we cover the various spaces in which the coordinates for
such 3d meshes can be defined. We also give an overview of the pipeline that
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converts the geometry from its mesh representation to its final representation in
the color buffer as pixels.

Transformations
Each mesh is typically defined in its own local coordinate space called object-
space or sometimes model-space. In other words, the coordinates of the vertices
are defined relative to a local basis that can be oriented in a way that makes it
practical to define and edit the mesh. In the case of the box shown in figure A.1,
a local coordinate space is chosen so that the sides of the box are parallel to the
coordinate axes, and consequently it is easy to define the coordinates of the mesh.

(2,2,2)

(2,0,2)

X

Y

Z

(0,0,0) (2,0,0)

(2,2,0)

(0,2,2)

(0,2,0)

(0,0,2)

Figure A.1: Wire-frame box in object-space

A 3d scene generally consists of a number of meshes placed into a common
space called world-space. To transform a mesh from object-space into world-
space, a matrix called the world matrix is applied to all its vertices. The world
matrix rotates, scales and translates the vertices into new coordinates, relative to
the common basis. By associating multiple different world matrices to a mesh,
it can be rendered multiple times into different positions and orientations in the
scene. Each time a new instance of the mesh is said to be put into the world.

The world-space is infinitely large and only a small fraction of it can be visu-
alized on a computer screen. To define what is seen, a camera is put into the world
with a certain position, orientation and FOV 3.

The camera defines a third coordinate space called camera-space or view-
space with origin at the camera position: a z-axis along the viewing direction;

3FOV is short for Field Of View and defines how wide the field of vision is. Typically, a FOV
of 90 degrees is used, even though the human eye has a much wider field of view.
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a y-axis along the ’up’ direction of the camera; and an x-axis along the ’right’
direction of the camera. From these three basis vectors it is possible to create a
view matrix which has the effect of transforming a point from world-space into
view-space. The view matrix is applied to all vertices after they have been put
into world-space by their world matrices.

The view-space is still an infinite 3d space and thus, like the world space,
only a small fraction of it can be visualized on a computer screen. The camera
position, along with the FOV, defines an infinitely deep pyramid with a top at
the camera position and spreading out, away from the camera, along the z-axis
in the view-space. This pyramid is intersected by two planes, both orthogonal to
the view direction, called the near clipping plane and the far clipping plane. The
intersection between the pyramid and the near clipping plane defines a bounded
2d area that can be thought of as the computer screen, put into the 3d world. The
far clipping plane is used to limit the visible region of the view-space to a closed
volume, which is used in the projection step. The four side planes of the pyramid,
along with the two clipping planes, define a frustum shaped volume called the
view frustum and only geometry inside this frustum is deemed visible and will be
projected onto the screen. Refer to figure A.2 for a visualization of the viewing
frustum and the clipping planes.

Far clipping plane

Near clipping plane

View frustum

Figure A.2: The view frustum

Using a projection matrix the geometry is projected from view space onto the
near clipping plane, which has the effect of scaling down points that are far away.
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This is the way perspective is introduced to the image. Because it is possible for
two different 3d points in the view frustum to be projected onto the same 2d point
on the near clipping plane, the projection matrix also scales the z component of
the point to be within the range [0..1]. A value of zero means that the point is on
the near clipping plane, and a value of one means that it on the far clipping plane.
This scaled depth value can then be used in the z-buffer test as described above. To
have a fixed coordinate range of the projected points, independent of the FOV, the
projection matrix also scales the x and y components of the points to lie within
the range [-1..1], with the point (0,0) being at the center of the screen. So the
total result of the projection matrix is to convert the view frustum into a bounded
cubic space called projected-space with a fixed coordinate range as shown in a 2d
top-down view in Figure A.3.

p1

p2
p3

p4

near plane

far plane

camera

(-1,0) (1,0)

(1,1)(-1,1)

camera

p1

p2 p3

p4

Projection Matrix

Figure A.3: Projected-space

The final conversion from projected-space into the actual color buffer is
achieved by simply discarding the z component of the projected-space coordi-
nate and then scaling the resulting 2d coordinate to the actual resolution of the
color buffer - for example 1024x768 pixels.

To summarize: the meshes or objects in a 3d scene are initially defined in
their own local spaces, and before they are actually shown on the computer screen
they go through a chain of space transitions, as shown in figure A.4. In practice
all these transitions happen in a single step, as the nature of matrices allows us
to concatenate the world, view and projection matrix into one single matrix that
takes a vertex all the way from object-space into projected-space.

Once the geometry has been projected onto the screen, each projected triangle
is then rasterized into fragments and a color is calculated for each fragment, which
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Figure A.4: Chain of transitions

is then finally written into the corresponding pixel in the color buffer. Once all
fragments of all triangles have been rasterized into the color buffer the image is
completed and can be shown on the screen.

Pipeline
The entire graphics pipeline can be visualized as a series of steps, each step being
represented by a box as shown in figure A.5.

Application Vertex process Rasterizer Pixel Process
Framebuffer
blending

Figure A.5: The graphics pipeline

Each step is completely self-contained and depends only on its input. There-
fore, if we wanted we could replace one or more of the boxes with our own custom
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components. As long as the output of our new components is valid as input to the
next box in the chain everything would still work as it should. Previous graphics
cards did not support custom components and operated solely through a so-called
fixed function pipeline where the graphics APIs only allowed the programmer to
set certain fixed parameters such as the different matrices, lights, materials etc.
The actual steps of processing the vertices and shading the fragments were thus
totally defined by those parameters, as described above.

However, on newer graphics cards it is now possible to install custom compo-
nents for the vertex and fragment processing step and this gives the programmer
the power to implement advanced vertex transitions and fragment shading pro-
grams, which is necessary for advanced graphics effects such as our implementa-
tion of soft shadows.

The custom components are called vertex shaders and pixel shaders and are
small programs that are executed once per vertex or pixel respectively. The input
to a vertex shader is the data for a single vertex of the mesh which is currently
being rendered, as specified by the application programmer. This will typically
consist of a position in object-space, a vertex normal, a diffuse color and one or
more sets of texture coordinates but this isn’t a requirement - the input can be
anything that fits into a valid vertex format. As a position in projected-space is
a crucial input to the rasterizer for it to be able to draw the triangles this is also
a required output from any vertex shader. In addition to this position, the vertex
shader can also output other things that are computed on a per-vertex basis.

The output from the vertex shader is, as explained above, the input to the
rasterizer component, which will use the input positions to scanline convert the
triangle into individual fragments. The rasterizer will also do a linear interpolation
of all additional input values over the triangle surface, and for each pixel it will
call the pixel shader with the interpolated values as input.

The pixel shader will then, based on the input, calculate a final color for the
fragment and output it to the frame-buffer component, which will then blend it
into the color buffer. The pixel shader can use a number of arithmetic instructions
to do calculations on the input values as well as sample one or more texture maps
for use in its computations - but in the end it must output at least one color, since
that is required as input to the frame-buffer component.

Both the vertex shader and pixel shader component have an additional way of
getting input, namely through a constant store where the application can upload
settings that are constant for all pixels or vertices in a particular frame. The store
consists of a number of 4d vectors with 32 bit float components and the size of
the store depends on the hardware - but it is typically not very large4. Constant
parameters include the matrices discussed above: the world matrix, view matrix

4Current hardware has a constant store size between 128 and 256 slots.
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and projection matrix, as well as settings for materials and lights. All these things
must be uploaded manually to the constant store by the application programmer.
Figure A.6 summarizes the inputs to two shader components.

pos

normal

tex
coords

color

Vertex stream Vertex shader Pixel shaderRasterizer

Constant store

Figure A.6: The shader inputs

A.3 Vertex and pixel shaders
The introduction of vertex and pixel shaders gives the programmer much greater
expressive power than the previous fixed function pipeline. Shaders are, however,
still a very young technology with several severe limitations. An understanding
of these limitations is necssary to be able to use them properly.

Shader instructions
A standard instruction set for shaders has not yet been established. With almost
every new generation of graphics cards, new instructions are introduced that either
expand on the core functionality or expose new features in the hardware. As a re-
sult both vertex and pixel shaders exist in many different versions, and while they
are all backwards compatible it still means that shaders written for f.ex. ps2.05

cannot be run on hardware that only support an older profile. This makes it cum-
bersome to write software that both utilizes the latest features and runs on older
hardware. Either a shader is written using the lowest possible version (possibly
in a suboptimal way for the newest cards) or multiple versions of the same shader
are written, one for each hardware profile that is to be supported.

5It is common notation to label the different versions of shaders with the prefix ’vs’ or ’ps’ for
vertex shaders and pixel shaders respectively, followed by the version number.
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Another limitation in current shader profiles is that there is a maximum num-
ber of instruction slots available for each shader. For vs2.0 the limit is 256 arith-
metic instructions, and for ps2.0 the limit is 64 arithmetic instructions and 32
texture instructions. Also, since there is no true branching or looping in ps2.0
or vs2.0, loops must be unrolled with each iteration taking up a certain amount
of the available instruction slots. With this in mind it becomes clear that heavy
optimization is often required to keep a shader within its instruction limit.

In DirectX6, the shaders are programmed through an assembly-like API. This
API consists of a number of one-slot instructions and some macros that each take
up multiple instruction slots. An example of a macro is the ’m4x4’ instruction,
which transforms a vector by a 4x4 matrix. This macro takes up four instruction
slots since it can be implemented through four one-slot dot product instructions.
However there is not a direct mapping between a shader in its assembly form and
the actual implementation on the hardware, and the macros are not expanded by
the runtime system. Instead, the shader is sent as a stream of tokens to a back-
end compiler, implemented in the graphics driver. This compiler compiles the
shader into native instructions, available on the particular graphics card, and runs
it through an optimizer to do optimal register and instruction scheduling. If the
hardware has native support for a macro, it will be able to execute it as it is,
otherwise it will expand it into a series of simpler instructions.

The graphics driver usually does a good job of optimizing the shaders, and
without very detailed knowledge of the underlying hardware there is not much one
can do to facilitate the process, except keeping the shaders as short as possible.
One way of reducing the instruction count is to exploit the fact that the GPU is a
vector based processor, meaning that all instructions operates on 4d vectors with
32 bit float components. This is important to keep in mind when writing shaders,
because often multiple scalar operations can be packed together in a single vector
operation, if the operands are properly arranged in two vectors. As shown in figure
A.7 it is possible to add four sets of two scalar values together in a single ’add’
assembly instruction.

Using a technique called swizzling it is possible to access the individual com-
ponents of each register. Swizzling refers to the ability to copy any source register
component to any temporary register component, and it is done before the instruc-
tion that uses swizzling is run. An example of an instruction using swizzling is
“mov r1, r0.xxzy”, which has the effect of first creating a temporary register with
both the x and y component set to r0.x, the z component to r0.z and the w com-
ponent to r0.y - and then assigning this register to r1. Using explicit swizzling on
both source and destination registers is good practice, since it provides optimiza-
tion hints to the graphics driver. Thus it might be able to optimize the native code

6We have used DirectX 9.0b.
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Figure A.7: Vectorization of operations

for an instruction like the left one in figure A.7 if it is explicitly told that only the
x components of the vectors needs to be added together. See [Rig02] for more
information on how shaders operate on modern graphics hardware.

Working with shaders
Although the performance of current graphics cards seems impressive at first sight
it is easy to write shaders that push them to the limit. It is especially easy to hit
the instruction limit described above and optimization of shader code is therefore
very important. As pixel shaders are run many times more than vertex shaders
they should be the main target for optimizations and a good way to start is to
make sure that nothing is calculated on a per-pixel basis that is actually constant
for all pixels in the frame. Such values should be uploaded to the shader through
the constant registers. Furthermore nothing that is constant, or can be interpolated
linearly over an entire triangle should be calculated in the pixel shader, as it is
better calculated on a per-vertex basis in the vertex shader and then interpolated
by the rasterizer. Examples of values that are usually computed on a per-vertex
basis and then interpolated over the triangle are texture coordinates and diffuse or
specular colors.

Another thing that is important to understand when working with shaders is
that vertex and pixel shaders work purely on the data they are provided with as
input and that they cannot interact in any way with other vertices or pixels. For
example it is not possible for a vertex shader to check the position of a neighbor
vertex and use this information in its own calculations. On a similar note, a pixel
shader cannot look up the color of another pixel and use this to decide its output.
These are understandable and reasonable limitations, but they still put a limit on
what kind of algorithms that can be implemented on the hardware through shaders.
Skinned animation f.ex., where each vertex is animated using one or more trans-
formation matrices without looking at its neighbors, is possible to implement in
a shader while cloth animation currently isn’t because it works through a spring
system that relies on the ability to move neighbor vertices.
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High-level shader programming
Traditionally shaders have been written in an assembly-like language, as described
above. As a result, writing shaders was a cumbersome and slow process with lots
of debugging required to make the shaders work properly. Recently Microsoft
and nVidia has cooperated in developing a high-level language for programming
shaders, making shader development much easier for the application programmer.
nVidia has dubbed their language ’CG’, which is short for ’C for Graphics’ and
Microsoft has dubbed their version ’HLSL’ for ’High Level Shading Language’.
This has led to a great deal of confusion among developers, but in truth the two
languages are close to identical and the two compilers can compile the same high-
level shader code. The differences mainly lie in the runtime systems provided to
manage the shaders. To avoid further confusion we will refer to high-level shader
code in general as ’CG shaders’ for the remainder of this thesis. All the shaders
we have written for our soft shadows implementation have been written using this
high-level language.
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Appendix B

Screen-shots
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Figure B.1: Cosy back yard in the city
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Figure B.2: Examining a box
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Figure B.3: In the library
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Figure B.4: Pirates’ treasure on a small island
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Figure B.5: In the mine
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Figure B.6: Benchmark scenes
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Figure B.7: Single-pass vs. multi-pass shadows
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